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Abstract
One of the most fundamental and unsolved problems in speech
recognition is the mismatch problem. Speech systems trained by
a specific group of speakers, e.g. adults, do not work well with
another group, e.g. children. In the case of CALL, when a student
receives a bad score from a system, it may be just because he is an
outlier to the system. The problem is that he cannot know whether
he is an outlier or not. Recently, a speaker-invariant structural and
holistic representation of speech was proposed [1], where only the
interrelations among speech sounds were extracted to form their
external structure. Speech variation caused by speaker individu-
ality was modeled mathematically and, based on the model, the
speaker-invariance was guaranteed. This structural representation
was already applied to describe the pronunciations of language
learners [2]. Since the non-linguistic factors were well removed,
the representation purely showed non-nativeness in the individual
pronunciations. In this paper, using the new representation, lan-
guage learners are automatically classified irrespective of speaker
individuality. The classification is also done by an expert phoneti-
cian. High correlation is found between the two classifications.

1. Introduction
In most of all the speech systems, the spectrogram is used to repre-
sent acoustic features of speech. Since it contains not only linguis-
tic information but also non-linguistic information, the mismatch
problem more or less inevitably happens. To solve this problem,
speech data have been collected from thousands of speakers to
build the so-called speaker-independent models. But speaker adap-
tation or normalization techniques are often required. The speaker-
independent models are not really speaker-independent.

A novel alternative was proposed [1]. The speech variation
caused by the non-linguistic factors were modeled mathematically
and, based on this model, the speech components corresponding
to these factors were completely removed. Pitch information (har-
monic structure) is deleted by smoothing a given spectrum slice.
The proposed method removed the non-linguistic factors based on
the model. No explicit adaptation or normalization was needed.

The new representation was already applied to speech recogni-
tion and in CALL. Since the speaker information can be removed
from speech, speaker-independent speech recognition was imple-
mented using only a single training speaker. The performance and
the robustness of the proposed method was higher than the conven-
tional speech recognizer trained by 4,130 speakers although the
task was recognizing vowel sequences only [3]. In the CALL re-
search, with the proposed method, non-nativeness was highlighted
because speaker individuality was effectively suppressed [2]. In
this paper, learner classification is examined, where the classifica-
tion is expected to be done irrespective of gender and age.
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Figure 1: Spectral distortions caused by matrix A and vector b

2. Structural representation of speech
2.1. Modeling the non-linguistic speech variation

In speech recognition studies, the non-linguistic speech variation
is classified into three kinds; additive, convolutional, and linear
transformational distortions. Here, the first kind is ignored because
it is not inevitable. Microphones and rooms are typical reasons of
convolutional distortion. If a speech event is represented by cep-
strum vector c, this distortion changes c into c′=c+b. A part of
speaker individuality is also of this type. Vocal tract length differ-
ence is a typical factor to induce linear transformational distortion.
This is often modeled as frequency warping of the spectrum and it
changes c into c′=Ac [4]. Figure 1 schematizes the spectral distor-
tions due to matrix A and vector b, corresponding to horizontal and
vertical ones, respectively. Although this model is very simple, it
can change the speaker individuality of a speech sample easily.

2.2. Speaker-invariant structure embedded in speech

c′=Ac+b is called affine transformation. If some acoustic features
are found to be affine-invariant, they are speaker-invariant. Using
these features, a speaker-invariant representation is possible. Ev-
ery speech event is captured not as point but as distribution. All the
event-to-event distances are calculated as Bhattacharyya distance
(BD) to form a distance matrix among the events.

BD(p1(c), p2(c)) = − ln
H

p

p1(c)p2(c)dc. (1)

Since BD is affine-invariant, the distance matrix becomes speaker-
invariant. Since a distance matrix determines a geometrical struc-
ture uniquely, the BD-based matrix defines its speaker-invariant
structure. Figure 2 shows Jakobson’s geometrical structure of the
French vowels. He claimed that this structure should be observed
irrespective of speakers. We consider that the proposed method
implements structural phonology physically. The invariance indi-
cates geometrically that multiplication of matrix A and addition
of vector b mean rotation and shift of a structure, respectively. It
should be noted that we showed recently that the transformation
invariance of BD is satisfied also in the case of non-linear transfor-
mations [5]. Then, we call it robust and structural invariance.



Figure 2: Jakobson’s geometrical structure [6]

3. Development of the vowel structure
The new representation was applied to trace the development in
vowel learning [2]. Various non-native pronunciations of the vow-
els were simulated by a Japanese speaker who can speak American
English (AE) well. Each of the 11 AE vowels was recorded once as
/bVt/ and each of the 5 Japanese vowels five times as /bVto/. Using
the vowel segments, various vowel structures were constructed as
matrices. For example, the completely Japanized English structure
could be obtained by substituting Japanese /a/ sounds for /2,æ,A,
@,Ä/ and the other Japanese vowels for the other corresponding AE
vowels. Partly-American and partly-Japanese structures could be
constructed by changing the substitution pattern. Figure 3 shows
the completely Japanized structure, a partly-American and partly-
Japanese one, and the AE one. Ward’s clustering method was used
here to convert a matrix into a tree diagram. The second tree dia-
gram was obtained from the first one by correcting /2,æ,A,@,Ä/.

4. Classification of the learners
A learner, represented as a full set of vowel distances, was visu-
alized as a tree diagram. If distance measure between two vowel
matrices, i.e. two learners, is adequately derived, then, we can ob-
tain a full set of learner-to-learner distances. This means that the
learners can be classified purely based on their vowel structures,
without any respect to age, gender, speaker, microphone, etc.

4.1. Speech material used in the experiment

Six male and six female high school or university students who
were returnees from US joined the recording. The 11 AE vow-
els and the 5 Japanese vowels were recorded once as /bVt/ and
five times as /bVto/, respectively. This was because five different
American vowels, at most, were replaced by a Japanese vowel.

Considering the well-known Japanese habits of producing AE
vowels, the substitution table was prepared, shown as Table 1. Us-
ing this table, 8 patterns of the vowel substitution were obtained,
which is listed as Table 2. P1 and P8 correspond to the completely
Japanized English and the good American English pronunciations,
respectively. P2 to P7 are half-Japanese and half-American pro-
nunciations. Now we have 8 different vowel structures per speaker
and 96 vowel structures altogether. The aim of the experiment is to
examine whether the 96 structures can be classified purely based
on the vowel structures, not based on gender, age, or speaker.

4.2. Matrix-to-matrix distance measure

Suppose that two geometrical vowel structures, S and T , are given
as two distance matrices. Then, structure-to-structure distance is
obtained after shifting (+b) and rotating (×A) one of the structures

Completely Japanized structure of the vowels

Partly-A and partly-J structure of the vowels

American English structure of the vowels

Figure 3: Japanized structure to American structure

Table 1: Vowel substitution table
Japanese vowels ↔ English vowels

a A, 2, æ, Ä, @

i i, I

u u, U

e E

o O

Table 2: 8 patterns of the vowel substitution
A æ 2 @ Ä I i U u E O

P1 J J J J J J J J J J J
P2 A A A A A J J J J J J
P3 J J J J J A A A A A A
P4 A A J J J A A J J A A
P5 J J A A A J J A A J J
P6 A J A J A J J J J A A
P7 J A J A J A A A A J J
P8 A A A A A A A A A A A

A : American English pronunciations are used.
J : Japanese vowels are substituted.

so that the two can be overlapped the best, shown in Figure 4. This
operation naturally means implicit speaker adaptation. The dis-
tance is calculated as the minimum of the total distance between
the corresponding two points after shift and rotation. In [1], it was
experimentally shown that the minimum distance, D1, could be
approximately calculated as euclidean distance between the two
matrices, where the upper-triangle elements form a vector;

D1(S, T ) =
q

1
M

P

i<j(Sij − Tij)2, (2)

where Sij is (i, j) element of matrix S and M is the number of the
vowels. D1 can be regarded as summation of differences of vowel
contrasts between the two. For example, distance between /2/ and
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Figure 5: Classification of the 96 vowel structures based on the contrast-based comparison (D1)
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Figure 6: Classification of the 96 vowel structures based on the substance-based comparison (D2)
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Figure 7: Classification of the 96 vowel charts plotted by an expert phonetician

S1

S2

S3S4

S5

T1
T2

T3T4

T5

O

Figure 4: Distance calculation after shift and rotation

/E/ is compared between the two structures and the difference of
the two distances is summed. In the conventional framework such
as DTW and HMM, vowel substance /2/ of a structure and that
of another was directly compared acoustically. In this framework,
distance between two vowel structures, D2, is formulated as

D2(S, T ) =
q

1
M

P

i BD(vS
i , vT

i ). (3)

vS
i is vowel i of S. Table 3 shows the acoustic conditions. Each

vowel is modeled as diagonal Gaussian distribution and the param-
eters are estimated using MAP (Maximum A Posteriori) criterion.

4.3. Results and discussions

Figures 5 and 6 show the results of classifying the 96 vowel struc-
tures in two different ways. Numbers and alphabets at the leaf

Table 3: Acoustic conditions of the analysis
sampling 16bit / 16kHz
window 25 ms length and 1 ms shift
parameters FFT cepstrum (1∼10)
HMMs 1-mixture monophones with diagonal matrices
topology 3 states and 1 distribution per HMM (GM)

nodes represent the vowel patterns (1 to 8) and the speakers (A to
L), respectively. The two colors indicate the two genders. If vowel
contrasts are compared in Figure 5, good pronunciation classifica-
tion is done. On the other hand, if vowel substances are compared
directly in Figure 6, which is often done in DTW, it leads to the
complete speaker classification. It should be noted that the two
tree diagrams of Figures 5 and 6 were obtained from the same
data set and that the structural difference between the two trees is
solely caused by difference in defining the two distance measures
D1 and D2. Most of the speech applications were built based on
the substance-based comparison of sounds. We consider that this
is one of the reasons why CALL is sometimes criticized not to be
pedagogically-sound enough. These criticisms are reviewed in [7].

In Figure 5, some different vowel patterns are found to belong
to a single subtree, e.g. P2, P5, and P8. This is considered due
to differences of the language background among the 12 speakers.
Although they are returnees from US, length and place of their stay



in US are different from each other. The vowel structure strongly
depends on the speaker’s regional accent [8]. If returnees with the
same language background both for the two languages can be used,
a more coherent classification tree will be obtained.

5. Comparison with a phonetician’s tree
Figures 5 and 6 clearly show that the proposed representation is
remarkably valid to capture the non-nativeness in the individual
pronunciations irrespective of the non-linguistic factors. However,
it is still difficult to claim that every step of binary and gradual
separation of the learners in Figure 5 is adequate enough. To in-
vestigate the adequacy of the classification, a similar tree diagram
is generated from manual plotting by an expert phonetician. The
manual tree is compared with the automatic tree.

5.1. Drawing vowel charts through listening

Figure 5 was generated with the 96 distance matrices and the ma-
trices were automatically calculated by the structural speech analy-
sis. This means that, if the distance matrices are obtained by a pho-
netician’s listening to all the vowel samples, his own tree diagram
can be generated through the same procedures used in Section 4.

The 96 sets of the 11 vowels were presented to the phonetician
through headphones. He was asked to draw 96 vowel charts. To
facilitate this task, a vowel chart drawing software was developed
and, by clicking a mouse, the position of each vowel was speci-
fied. In phonetics, a two-dimensional trapezoidal vowel chart is
usually used to show the structural relations among the vowels,
where only the tongue position is focused on. In this work, how-
ever, a four-dimensional chart was adopted. The first two dimen-
sions were used to specify the tongue position. The third one was
for lip-rounding and the last one for rhoticity of /Ä/. In Figure 8,
the four-dimensional framework adopted in the software is shown,
where the last dimension is separately added to the other three
ones. Numbers on the segments are relative distances between two
nodes. In the experiments, a two-dimensional trapezoidal frame-
work was presented on a PC monitor to specify the tongue position
and values of the other two dimensions were separately asked.

5.2. Results and discussions

Figure 7 shows a tree diagram generated from the 96 vowel charts
plotted by the phonetician. As in Figure 5, it is clearly shown that
classification of the pronunciations, not the speakers, is done effec-
tively. In comparison between the two trees, although the relative
location of P4 is different, we can say that the two trees are very
similar structurally. In Figure 5, the 8 vowel patterns are firstly di-
vided into [1,3]+[6,5,2,4,7,8] and then into [1,3]+[6,5,2]+[4,7,8].
In Figure 7 they are clustered into [1,4,3]+[8,7,6,2,5] and then into
[1,4,3]+[8,7]+[6,2,5]. Another analysis was done to investigate the
structural similarity quantitatively, which was correlation analysis
between the two sets of ninety-six 11×11 vowel matrices. Figure 9
shows the correlation between the two sets of 5,280 (96×11C2)
vowel distances. High correlation of 0.72 is obtained and this re-
sult shows good validity of the proposed method. However, the
above results were obtained from only a single phonetician and
the comparison with others should be done in the near future.

6. Conclusions
The speaker-invariant, structural and holistic representation of
speech was effectively applied to classify language learners inde-
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Figure 9: Correlation between the 2 sets of vowel distances

pendently of the inevitable non-linguistic variations in speech. The
representation only captured the phonic contrasts and discarded
the speech substances to remove these variations. Results showed
that the contrast-based comparison effectively classified the pro-
nunciations not the speakers and it was very similar structurally to
the manual classification done by an expert phonetician. On the
other hand, the substance-based comparison showed the complete
speaker classification. In the proposed method, absolute properties
such as formant frequencies were completely discarded. Interest-
ingly enough, it means that only the contrasts of speech sounds
may be sufficient enough to be used for assessing learners’ pro-
nunciations. In [9], without absolute acoustic properties, it was
correctly estimated for each learner which vowel should be cor-
rected by priority. Interested readers should refer to that work.
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