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Cognitive Media Processing @ 2015

Title of each lecture

• Theme-1 
• Multimedia information and humans 

• Multimedia information and interaction between humans and machines 

• Multimedia information used in expressive and emotional processing 

• A wonder of sensation - synesthesia - 

• Theme-2 
• Speech communication technology - articulatory & acoustic phonetics - 

• Speech communication technology - speech analysis - 

• Speech communication technology - speech recognition - 

• Speech communication technology - speech synthesis - 

• Theme-3 
• A new framework for “human-like” speech machines #1 

• A new framework for “human-like” speech machines #2 

• A new framework for “human-like” speech machines #3 

• A new framework for “human-like” speech machines #4

c 1 

c 3 c 2 

c 4 

c D 



Speech is extremely variable.

Various factors change speech acoustics easily. 

The world’s tiniest high school girl



?

Machine strategy (engineers’ strategy): ASR 
Collecting a huge amount of speaker-balanced data 

Statistical training of acoustic models of individual phonemes (allophones) 

Adaptation of the models to new environments and speakers 
Acoustic mismatch bet. training and testing conditions must be reduced. 

Human strategy: HSR 
A major part of the utterances an infant hears are from its parents. 

The utterances one can hear are extremely speaker-biased. 

Infants don’t care about the mismatch in lang. acquisition. 
Their vocal imitation is not acoustic, it is not impersonation!!

A difference bet. machines and humans



De facto standard acoustic analysis of speech

Feature separation to find specific info.
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Insensitivity to 
pitch differences

Two acoustic models for speech/speaker recognition 
Speaker-independent acoustic model for word recognition 

   

Text-independent acoustic model for speaker recognition 
  

Require intensive collection 
                    is possible or not?
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Vocal learning (including vocal imitation) 
A imitate(s) B vocally. 

A: students and B: teachers 

A: infants and B: parents (caretakers) 

A: you and B: professional singer (Karaoke) 

But A do not impersonate B. 

Acoustically mismatched imitation. 

We’re very insensitive to speaker identity transmitted via speech. 

Acoustically matched imitation is often found in 
Autistics (自閉症), who have language disorder [Grandin’96] 

Animals’ vocal imitation (birds, dolphins, whales, etc) [Okanoya’08]

Insensitivity in our language learning



Insensitivity and sensitivity

Infants’ vocal learning is 
insensitive to age and gender differences. (A) 

sensitive to accent differences. (B) 

Infants’ vocal learning seems to be 
insensitive to feature instances and sensitive 
to feature relations. 

(A) = instances and (B) = relations. 

Relations, i.e., shape of distribution can be 
represented geometrically as distance matrix.
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Distribution of normalized formants among AE dialects [Labov et al.’05]
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formant frequencies 
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A claim found in classical linguistics

Theory of relational invariance [Jakobson+’79] 
Also known as theory of distinctive features 

Proposed by R. Jakobson

We have to put aside the accidental properties of 
individual sounds and substitute a general expression 
that is the common denominator of these variables.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.



The Rubik’s cube seen through colored glasses [Lotto’99] 

We perceive that the two cubes are identical. 

Different / identical colors are claimed to be identical / different. 

Not only wavelength (absolute property) of each patch, but also it 
matters what contrast each patch has to its surrounding patches.

Invariant color perception against its bias



Invariant pitch perception against its bias

Key change (transposition) of a melody [Higashikawa’05] 

Absolute (perfect) pitch (Do, Re, Mi... = pitch names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = Re, Ti, Re, So, Mi, So, So, Re. 

Relative pitch with transcription ability (Do, Re... = syllable names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = So, Mi, So, Do, La, Do, Do, So. 

Relative pitch without transcription ability 
1 = La, La, La, La, La, La, La, La.         2 = La, La, La, La, La, La, La, La 

Different / identical tones are claimed to be identical / different. 

Not fundamental frequency (absolute property) of each tone, but it 
only matters what contrast each tone has to its surrounding tones.

1
2

（音名）

（階名）



An evolutional point of view

How old is the relative perception in evolution? [Briscoe’01]



An evolutional point of view

How old is the relative perception in evolution? [Hauser’03]

1
2

1 = 2



VI = children’s active imitation of parents’ utterances 
Language acquisition is based on vocal imitation [Jusczyk’00]. 

VI is very rare in animals. No other primate does VI [Gruhn’06]. 

Only small birds, whales, and dolphins do VI [Okanoya’08]. 

A’s VI = acoustic imitation but H’s VI = acoustic = ?? 
Acoustic imitation performed by myna birds [Miyamoto’95] 

They imitate the sounds of cars, doors, dogs, cats as well as human voices. 

Hearing a very good myna bird say something, one can guess its owner. 

Beyond-scale imitation of utterances performed by children 
No one can guess a parent by hearing the voices of his/her child. 

Very weird imitation from a viewpoint of animal science [Okanoya’08].

Language acquisition through vocal imitation

?



Language acquisition through vocal imitation

Utterance    symbol sequence    production of each sym. 

Phonemic awareness is too poor to decompose an utterance. 

Several answers from developmental psychology 
Holistic/related sound patterns embedded in utterances 

Holistic wordform [Kato’03] 

Word Gestalt [Hayakawa’06] 

Related spectrum pattern [Lieberman’80] 

The patterns have to include no speaker information in themselves. 
If they do it, children have to try to impersonate their fathers. 

What is the speaker-invariant and holistic pattern in an utterance?
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Invariant and constant perception wrt. color and pitch 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

Invariant timbre perception against its bias

 

A scale in LilyPond
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Invariant and constant perception wrt. timbre 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.
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Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



Impersonation vs. non-impersonation

A very talented impersonator of Seiko Matsuda

Seiko’s daughterSeiko’s impersonator



VI = children’s active imitation of parents’ utterances 
Language acquisition is based on vocal imitation [Jusczyk’00]. 

VI is very rare in animals. No other primate does VI [Gruhn’06]. 

Only small birds, whales, and dolphins do VI [Okanoya’08]. 

A’s VI = acoustic imitation but H’s VI = acoustic = ?? 
Acoustic imitation performed by myna birds [Miyamoto’95] 

They imitate the sounds of cars, doors, dogs, cats as well as human voices. 

Hearing a very good myna bird say something, one can guess its owner. 

Beyond-scale imitation of utterances performed by children 
No one can guess a parent by hearing the voices of his/her child. 

Very weird imitation from a viewpoint of animal science [Okanoya’08].

Language acquisition through vocal imitation

?



“I impersonate a teacher.”

Some comments from an autistic women 
Q: “How do you do vocal imitation in a Karaoke box or in a class 
of foreign language?” 

A: “I impersonate a professional singer or a teacher.” 
B: “Acoustic imitation seems to be her default strategy of vocal imitation.” 

A: “Spoken language is difficult to use.” 
A: “Written language and sign language are much easier.”



TV program with talented impersonators

Can you enjoy such a TV program? 
I cannot understand what is amusing. 

Can you perceive any similarity between these pictures? 
No. I believe that this is much similar to this picture. 

Robust perception of equivalence against deformation 
Our perception is very robust with a certain kind of deformation.



TV program with talented impersonators

Can you enjoy such a TV program? 
I cannot understand what is amusing. 

Can you perceive any similarity between these pictures? 
No. I believe that this is much similar to this picture. 

Robust perception of equivalence against deformation 
Our perception is very robust with a certain kind of deformation.



Non-robustness with other deformation

Thatcher illusion



Non-robustness with other deformation

Thatcher illusion



Claims from a professor of animal sciences

Dr. Temple Grandin @ Colorado State University 
She is herself autistic (Asperger syndrome). 

Autistics often imitate the utterances of TV/radio commercials. 
TV/radio often gives “acoustically” identical utterances. 

The utterances from family members change “acoustically” time to time. 

They often imitate the sounds of objects such as cars, doors, etc. 
These sounds, including human voices, are just acoustic sounds. 

Interesting claims from her 
Similarity of information processing between animals and autistics 

Storing the detailed aspects of input stimuli as they are in the brain 
Animal : local / detail / absolute 

Human : holistic / abstract / relative 

Good ability to generalize



A claim found in classical linguistics

Theory of relational invariance [Jakobson+’79] 
Also known as theory of distinctive features 

Proposed by R. Jakobson

We have to put aside the accidental properties of 
individual sounds and substitute a general expression 
that is the common denominator of these variables.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.



 Temple Grandin’s TED talk

You can hear her talk at TED.



A book written by an autistic boy

“I can understand my mother’s utterances only”.

http://www.nhk.or.jp/school-blog/300/195393.html

http://www.nhk.or.jp/school-blog/300/195393.html


Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



Invariant and constant perception wrt. color and pitch 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

Invariant timbre perception against its bias
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Invariant and constant perception wrt. timbre 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.
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A melody and its transposed version [Higashikawa’05] 

Listeners with RP can perceive the same sound name sequence. 
So Mi So Do  /  Ra Do Do So  /  So Do Re Mi Re Do  /  Re 

The same sound distribution pattern is found in 1) and 2).

1)

2) 1 1 1 1 1 1 1
2 2 2 2 2 2

2
2

1

Whole = 2 Semi

3 wholetones

3 wholetones

　 　and  　   have to be  
fa & ti or ti & fa due to  
contrastive constraints.

Invariant pitch perception against its bias

log(F0) log(2F0)

w w w w ws s
Do Re Mi Fa So La Ti Do



Relative pitch vs. relative timbre
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Key-invariant arrangement of tones and its variants 

Spk-invariant arrangement of vowels and its variants

Western = 5 whole + 2 semi 

D to I = classical church music 

Arabic = with non-semi intervals 
Western music in Arabic scale

Relative pitch vs. relative timbre

Major→
Minor→

←Arabic scale

Williamsport, PA Chicago, IL Ann Arbor, MI Rochester, NY
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Invariant pitch perception against its bias

Key change (transposition) of a melody [Higashikawa’05] 

Absolute (perfect) pitch (Do, Re, Mi... = pitch names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = Re, Ti, Re, So, Mi, So, So, Re. 

Relative pitch with transcription ability (Do, Re... = syllable names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = So, Mi, So, Do, La, Do, Do, So. 

Relative pitch without transcription ability 
1 = La, La, La, La, La, La, La, La.         2 = La, La, La, La, La, La, La, La 

Different / identical tones are claimed to be identical / different. 

Not fundamental frequency (absolute property) of each tone, but it 
only matters what contrast each tone has to its surrounding tones.

1
2

（音名）

（階名）



People with RP who can transcribe a melody cannot 
label a single tone using a pitch name or a syllable name. 

Who cannot label a single speech sound (vowel sound)? 

Identification of vowels produced by giants and fairies 
Difficult to label isolated vowel sounds [Aoki’04] 

Possible to transcribe a meaningless sequence of morae [Hayashi’07]

What’s hard to do only with relative timbre?
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People with RP who can transcribe a melody cannot 
label a single tone using a pitch name or a syllable name. 

Who cannot label a single speech sound (vowel sound)? 

Identification of vowels produced by giants and fairies 
Difficult to label isolated vowel sounds [Aoki’04] 

Possible to transcribe a meaningless sequence of morae [Hayashi’07]

What’s hard to do only with relative timbre?

90

90

60

90

90

60

90

90

60

real men→

real women→
real children→

20
Phonetic identification ability of isolated sounds 

may be unnecessary for oral communication?

Phoneme awareness is not needed for 
speech communication?

236cm-tall

73cm-tall



Invariant pitch perception against its bias

Key change (transposition) of a melody [Higashikawa’05] 

Absolute (perfect) pitch (Do, Re, Mi... = pitch names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = Re, Ti, Re, So, Mi, So, So, Re. 

Relative pitch with transcription ability (Do, Re... = syllable names) 
1 = So, Mi, So, Do, La, Do, Do, So.    2 = So, Mi, So, Do, La, Do, Do, So. 

Relative pitch without transcription ability 
1 = La, La, La, La, La, La, La, La.         2 = La, La, La, La, La, La, La, La 

Different / identical tones are claimed to be identical / different. 

Not fundamental frequency (absolute property) of each tone, but it 
only matters what contrast each tone has to its surrounding tones.

1
2

（音名）

（階名）



A melody and its transposed version [Higashikawa’05] 

Listeners with RP can perceive the same sound name sequence. 
So Mi So Do  /  Ra Do Do So  /  So Do Re Mi Re Do  /  Re 

The same sound distribution pattern is found in 1) and 2).

1)

2) 1 1 1 1 1 1 1
2 2 2 2 2 2

2
2

1

Whole = 2 Semi

3 wholetones

3 wholetones

　 　and  　   have to be  
fa & ti or ti & fa due to  
contrastive constraints.

Invariant pitch perception against its bias

log(F0) log(2F0)

w w w w ws s
Do Re Mi Fa So La Ti Do



Another hard thing to do for RP listeners

Hard task for those who cannot transcribe a melody 
Keep the third tone in a given melody in mind. Then, raise your 
hand if you find the same tone in a new melody. 

If difficult to transcribe it using symbols, this request has to be hard. 

Hard task for the speech-version of these people 
Keep the third sound in a given utterance in mind. Then, raise your 
hand if you find the same sound in a new utterance. 

If difficult to transcribe it using symbols, this request has to be hard.

In US and UK, there have 
to be many people who 
have severe troubles in 
reading and writing?



Another hard thing to do for RP listeners

Hard task for those who cannot transcribe a melody 
Keep the third tone in a given melody in mind. Then, raise your 
hand if you find the same tone in a new melody. 

If difficult to transcribe it using symbols, this request has to be hard. 

Hard task for the speech-version of these people 
Keep the third sound in a given utterance in mind. Then, raise your 
hand if you find the same sound in a new utterance. 

If difficult to transcribe it using symbols, this request has to be hard.

Dyslexia



Another hard thing to do for RP listeners

Hard task for those who cannot transcribe a melody 
Keep the third tone in a given melody in mind. Then, raise your 
hand if you find the same tone in a new melody. 

If difficult to transcribe it using symbols, this request has to be difficult. 

Hard task for the speech-version of these people 
Keep the third sound in a given utterance in mind. Then, raise your 
hand if you find the same sound in a new utterance. 

If difficult to transcribe it using symbols, this request has to be difficult.

Dyslexia (phonological dyslexia)



How I encountered dyslexia.
「あ」という声を聞いて母音「あ」と同定する能力は音声言語運用に必要か？

─ 187 ─

「
あ
」と
い
う
声
を
聞
い
て
母
音「
あ
」と
同
定
す
る

能
力
は
音
声
言
語
運
用
に
必
要
か
？

│
音
声
認
識
研
究
か
ら
の
一
つ
の
提
言

│

峯
松
信
明

は
じ
め
に　

〜
何
、
こ
の
変
な
タ
イ
ト
ル
？
〜

　

タ
イ
ト
ル
を
見
て
、
多
く
の
読
者
が
首
を
傾
げ
て
い
る
こ
と
だ

ろ
う
。
し
か
し
、
十
一
頁
の
本
記
事
を
読
み
終
え
た
時
に
、
ほ
ぼ

全
て
の
読
者
に
私
の
意
図
は
通
じ
る
も
の
、
と
考
え
て
い
る
。
そ

う
。「「
あ
」
と
い
う
声
を
聞
い
て
、
そ
れ
を
有
限
個
の
音
カ
テ
ゴ

リ
の
一
つ
と
し
て
の
母
音
「
あ
」
で
あ
る
と
同
定
す
る
能
力
は
、

音
声
言
語
運
用
の
必
要
条
件
で
は
な
い
。」
と
の
主
張
を
本
稿
で

は
展
開
す
る
（
文
献
１
）（
文
献
２
）。

　

そ
ん
な
馬
鹿
な
、
と
思
わ
れ
る
か
も
し
れ
な
い
。
こ
ん
な
実
験

を
考
え
て
み
よ
う
。
身
長
300
㎝
の
巨
人
と
50
㎝
の
小
人
に
孤
立
母

音
を
発
声
し
て
も
ら
う
。
通
常
音
声
学
の
教
科
書
に
は
、
F1
・
F2

話
し
言
葉
の
音
声

第
４
章

の
母
音
図
が
出
て
い
る
（
図
１
参
照
）。
複
数
の
男
性
／
女
性
の
サ

ン
プ
ル
か
ら
、
凡
そ
男
性
の
各
母
音
は
こ
の
領
域
、
女
性
の
各
母

音
は
こ
の
領
域
に
あ
る
、
と
い
っ
た
図
で
あ
る
。
フ
ォ
ル
マ
ン
ト

周
波
数
（
共
鳴
周
波
数
）
は
声
道
長
に
依
存
す
る
た
め
、
身
長
が

50
㎝
、
300
㎝
と
い
う
架
空
の
大
人
を
想
定
し
た
場
合
、
彼
ら
の
母

音
は
、
通
常
知
ら
れ
て
い
る
領
域
の
外
に
存
在
す
る
。
そ
の
よ
う

な
母
音
で
も
、
現
在
の
音
声
分
析
・
再
合
成
技
術
を
使
え
ば
非
常

に
高
品
質
な
音
声
と
し
て
生
成
で
き
る
。
さ
て
、
聞
い
た
こ
と
の

な
い
母
音
音
声
を
孤
立
提
示
さ
れ
て
、
読
者
は
同
定
で
き
る
だ
ろ

う
か
？

　

文
献（
５
）に
よ
れ
ば
、
こ
れ
は
困
難
な
タ
ス
ク
で
あ
る
こ
と
が

分
か
る
。
し
か
し
、
そ
の
巨
人
、
小
人
が
無
意
味
モ
ー
ラ
列
を
単

����������
	 �
����������������
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話し言葉の音声第４章

う
予
言
を
し
た
。
で
も
、
こ
の
予
言
、
人
に
は
言
え
な
か
っ
た
。

私
の
思
考
が
正
し
け
れ
ば
、
彼
ら
は
当
た
り
前
の
よ
う
に
存
在
す

る
は
ず
な
の
だ
が
、
そ
ん
な
人
が
存
在
す
る
こ
と
が
信
じ
ら
れ
な

か
っ
た
か
ら
で
あ
る
。
あ
る
時
、
勇
気
を
出
し
て
（
恥
を
か
く
こ

と
覚
悟
で
）
言
語
聴
覚
士
に
、
恐
る
恐
る
、
聞
い
て
み
た
。

　
「
音
声
言
語
は
流
暢
だ
し
雄
弁
。
頭
は
良
い
の
か
も
し
れ
な
い
。

で
も
何
故
か
本
が
読
め
な
い
、
手
紙
が
書
け
な
い
。
そ
う
い
う
成

人
が
米
国
や
英
国
に
多
か
っ
た
り
し
ま
せ
ん
か
？　

え
〜
と
、
教

育
を
受
け
て
い
な
い
と
か
、
そ
う
い
う
事
で
は
な
く
、
彼
ら
の
認

知
特
性
と
し
て
文
字
言
語
が
何
故
か
難
し
い
…
…
」

　
「
先
生
、
デ
ィ
ス
レ
ク
シ
ア
っ
て
ご
存
知
な
ん
で
す
か
？　

特

に
音
韻
性
の
や
つ
。」

　
「
で
ぃ
す
れ
…
…
何
で
す
か
そ
れ
？
」

　
「
変
だ
な
。
先
生
、
今
、
自
分
で
デ
ィ
ス
レ
ク
シ
ア
の
説
明
し

て
た
じ
ゃ
な
い
で
す
か
。」

　

四
一
年
間
の
人
生
の
中
で
、
あ
れ
ほ
ど
口
を
あ
ん
ぐ
り
開
け
た

こ
と
は
無
い
。
顎
が
外
れ
る
か
と
思
っ
た
。
こ
れ
は
実
話
で
あ
る
。

私
は
彼
ら
（
文
献
15
）
の
存
在
を
、
音
声
の
物
理
学
に
基
づ
い
て

予
言
し
て
い
た
。

　

音
そ
の
も
の
、
即
ち
、
声
の
絶
対
的
な
物
理
量
へ
の
着
眼
を

基
本
と
す
る
音
響
音
声
学
、
そ
し
て
、
そ
れ
を
工
学
と
し
て
纏

め
上
げ
、
様
々
な
技
術
を
構
築
し
て
来
た
音
声
工
学
。
こ
れ
ら
は

科
学
的
に
ど
れ
だ
け
正
し
い
活
動
だ
っ
た
の
だ
ろ
う
か
？
と
最
近

考
え
る
こ
と
が
あ
る
。
音
↓
（
Ｉ
Ｐ
Ａ
）
シ
ン
ボ
ル
変
換
の
能
力

は
、
音
声
学
者
に
な
る
た
め
に
は
必
須
の
能
力
な
の
か
も
し
れ
な

い
が
、
そ
れ
は
音
声
言
語
運
用
の
必
要
条
件
で
は
な
い
。
音
を
シ

ン
ボ
ル
化
で
き
る
能
力
で
は
な
く
、
音
と
し
て
は
異
な
る
二
つ
の

音
ス
ト
リ
ー
ム
の
中
に
、
物
理
的
に
同
一
の
情
報
が
埋
め
込
ま
れ

て
い
る
（
符
号
化
さ
れ
て
い
る
）
こ
と
を
認
知
す
る
能
力
の
獲
得
こ

そ
、
音
声
言
語
を
操
る
た
め
の
第
一
歩
で
あ
る
と
私
は
考
え
て
い

る
。
音
響
音
声
学
は
声
を
議
論
す
る
に
は
非
常
に
適
し
た
科
学
で

あ
る
が
、
音
声
言
語
を
議
論
す
る
た
め
の
妥
当
な
科
学
と
は
言
え

な
い
、
と
考
え
て
い
る
。
読
者
か
ら
忌
憚
の
無
い
意
見
を
頂
戴
で

き
れ
ば
幸
い
で
あ
る
。
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“Separately brought up identical twins” 

The parents get divorced immediately after the birth. 
The twins were brought up separately by the parents. 

What kind of pron. will the twins have acquired 5 years later?

? ?
Williamsport, PA

Q
ç

A

E

I

√

Rochester, NY

Q
I

E

A ç

√

Diff. of VTL = Diff. of timbre

Diff. of regional accents = Diff. of timbre

Machines that don’t learn 
what infants don’t learn.



De facto standard acoustic analysis of speech

Feature separation to find specific info.

speech
waveforms

phase
characteristics

amplitude
characteristics

source
characteristics

filter
characteristics

Insensitivity to 
phase differences
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Insensitivity to 
pitch differences

Two acoustic models for speech/speaker recognition 
Speaker-independent acoustic model for word recognition 

   

Text-independent acoustic model for speaker recognition 
  

Require intensive collection 
                    is possible or not?

P (o|w) =
�

s P (o, s|w) =
�

s P (o|w, s)P (s|w) �
�

s P (o|w, s)P (s)

P (o|s) =
�

w P (o, w|s) =
�

w P (o|w, s)P (w|s) �
�

w P (o|w, s)P (w)

o � ow + os

o
os

ow



Vocal learning (including vocal imitation) 
A imitate(s) B vocally. 

A: students and B: teachers 

A: infants and B: parents (caretakers) 

A: you and B: professional singer (Karaoke) 

But A do not impersonate B. 

Acoustically mismatched imitation. 

We’re very insensitive to speaker identity transmitted via speech. 

Acoustically matched imitation is often found in 
Autistics (自閉症), who have language disorder [Grandin’96] 

Animals’ vocal imitation (birds, dolphins, whales, etc) [Okanoya’08]

Insensitivity in our language learning



Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



Relative pitch vs. relative timbre
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F1
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pitch modulation timbre modulation
male avg.

female avg.



Triangle 

N-point general geometrical structure

Definition of the shape of a thing

L1

L2

L3
(L1, L2, L3)

a 
b 
c 
d 
e

a        b              e

L1

L2

L3

L5 L4

a

b

c d

e



Math. modeling of speaker variability

Speaker difference = mapping of voice spaces 
Space of speaker A       space of speaker B 

Mapping of speaker A into any of 7 billion speakers 
7 billion x 7 billion transformations are possible. 

Truly speaker-independence = mapping-invariant contrasts 
Are there any contrastive features that are invariant with any mapping?

C2
C3

C1

C2
C3

C1A B
f

f�1



Complete transform-invariance

Complete invariance between two spaces 
An assumption 

The transform is convertible and differentiable anywhere. 

An event in a space should be represented as distribution. 
Event p in space A is transformed into event P in space B 

p and P are physically different (/a/ of speaker A and /a/ of speaker B)

x

y

u

v
A

B

p1(x, y)

p2(x, y)

P1(u, v)

P2(u, v)

linear 

non-linear



∫∫

A
f(x, y)dxdy =

∫∫

B
f(x(u, v), y(u, v))|J(u, v)|dudv

=

∫∫

B
g(u, v)|J(u, v)|dudv

1

Variable conversion and integral 
A single variable:  

Two variables:

Complete transform-invariance

x = x(t) (x1 = x(t1), x2 = x(t2))� x2

x1

f(x)dx =
� t2

t1

f(x(t))
dx(t)

dt
dt =

� t2

t1

g(t)x�(t)dt

x = x(u, v), y = y(u, v)

u

v

x

y
A

B

J(u, v) � ⇥(x, y)
⇥(u, v)

� det

�
�x
�u

�x
�v

�y
�u

�y
�v

⇥

x = 3u + 2v � 5
y = 4u + 5v + 3

f(x, y)
g(u, v)|J(u, v)|

1

f(x, y)
g(u, v)|J(u, v)|

1



1.0 =

∫∫

A
f(x, y)dxdy =

∫∫

B
f(x(u, v), y(u, v))|J(u, v)|dudv

=

∫∫

B
g(u, v)|J(u, v)|dudv

1

Complete transform-invariance

Variable conversion and probability density function 
A single variable: 

Two variables:

x = x(t) (x1 = x(t1), x2 = x(t2))

1.0 =
� x2

x1

p(x)dx =
� t2

t1

p(x(t))
dx(t)

dt
dt =

� t2

t1

q(t)x�(t)dt

x = x(u, v), y = y(u, v)

u

v

x

y
A

B

J(u, v) � ⇥(x, y)
⇥(u, v)

� det

�
�x
�u

�x
�v

�y
�u

�y
�v

⇥

x = 3u + 2v � 5
y = 4u + 5v + 3

f(x, y)
g(u, v)|J(u, v)|

1

f(x, y)
g(u, v)|J(u, v)|

1



BD(p1(x, y), p2(x, y))

= − log

∫∫ √
p1(x, y)p2(x, y)dxdy

= − log

∫∫ √
q1(u, v)q2(u, v)|J(u, v)|dxdy

= − log

∫∫ √
q1(u, v)|J(u, v)| · q2(u, v)|J(u, v)|dudv

= − log

∫∫ √
P1(u, v)P2(u, v)dudv

= BD(P1(u, v), P2(u, v))

q1(u, v) = p1(x(u, v), y(u, v)), J = Jacobian

1

Bhattacharyya distance 
One of the distance measures bet. two distributions 

   

　

Complete transform-invariance

x = x(u, v), y = y(u, v)

BD(p1(x, y), p2(x, y))

= − log

∫∫ √
p1(x, y)p2(x, y)dxdy

= − log

∫∫ √
q1(u, v)q2(u, v)|J(u, v)|dxdy

= − log

∫∫ √
q1(u, v)|J(u, v)| · q2(u, v)|J(u, v)|dudv

= − log

∫∫ √
P1(u, v)P2(u, v)dudv

= BD(P1(u, v), P2(u, v))

q1(u, v) = p1(x(u, v), y(u, v)), J = Jacobian

1



Complete transform-invariance

Complete invariance between two spaces 
An assumption 

The transform is convertible and differentiable anywhere. 

An event in a space should be represented as distribution. 
Event p in space A is transformed into event P in space B 

p and P are physically different (/a/ of speaker A and /a/ of speaker B)

x

y

u

v
A

B

p1(x, y)

p2(x, y)

P1(u, v)

P2(u, v)

linear 

non-linear

− log

∫ √
p1(x, y)p2(x, y)dxdy

− log

∫ √
P1(u, v)P2(u, v)dudv

g(u, v)|J(u, v)|

1

− log

∫ √
p1(x, y)p2(x, y)dxdy

− log

∫ √
P1(u, v)P2(u, v)dudv

g(u, v)|J(u, v)|

1



Complete transform-invariance

Any general expression for invariance?[Qiao’10] 
BD is just one example of invariant contrasts. 

f-divergence is invariant with any kind of transformation. 

  

  

  

Invariant features have to be f-divergence. 
If                                    is invariant with any transformation, 

The following condition has to be satisfied.

g(t) =
�

t � � log(fdiv) = BD

fdiv(p1, p2) = fdiv(P1, P2)
g(t) = t log(t) � fdiv = KL � div.

M = p2(x)g
�

p1(x)
p2(x)

�

　　　　　　
x

y

u

v
A

B

p1

p2

P1
P2

(x,y)

(u,v)
fdivfdiv

fdiv(p1, p2) =

∫
p2(x)g

(
p1(x)

p2(x)

)
dx

− log

∫ √
P1(u, v)P2(u, v)dudv

g(u, v)|J(u, v)|

1

Z
M(p1(x), p2(x))dx



Invariance in variability

Topological invariance [Minematsu’09] 
Topology focuses on invariant features wrt. any kind of deformation.



Invariance in variability

Topological invariance [Minematsu’09] 
Topology focuses on invariant features wrt. any kind of deformation.

?



Utterance to structure conversion using f-div. [Minematsu’06] 

  
An event (distribution) may be smaller than a phoneme.

c1

c3c2

c1

c3c2
c4
cD

c4
cD

Bhattacharyya distance

BD-based distance matrix

Invariant speech structure

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

spectrogram (spectrum slice sequence)

cepstrum vector sequence

distribution sequence



Speech modification by VTLD

Speech modification by non-linguistic factors

A

b

�H(s) c� = c + b

ω1 ω2

ω′
2

ω′
1

π

0 π

c� = Ac
ω1 ω2

ω′
2

ω′
1

π

0 π
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VTL-based variation =     matrix A

Vocal tract length variation 
Can be approximated as multiplication of matrix A in cep. domain. 

A is represented as warping parameter   .

DIRECTIONAL DEPENDENCY OF CEPSTRUM ON VOCAL TRACT LENGTH

Daisuke SAITO1, Ryo MATSUURA1, Satoshi ASAKAWA1, Nobuaki MINEMATSU1, Keikichi HIROSE2

1Graduate School of Frontier Sciences, The University of Tokyo
2Graduate School of Information Science and Technology, The University of Tokyo

{dsk saito,matsuura,asakawa,mine,hirose}@gavo.t.u-tokyo.ac.jp

ABSTRACT

In this paper, we prove that the direction of cepstrum vectors strongly

depends on vocal tract length and that this dependency is represented

as rotation in the n dimensional cepstrum space. In speech recogni-
tion studies, vocal tract length normalization (VTLN) techniques are

widely used to cancel age- and gender-differences. In VTLN, a fre-

quency warping is often carried out and it can be implemented as

a linear transformation in a cepstrum space; ĉ = Ac. However,
the geometric properties of this transformation matrix A have not

been well discussed. In this study, its properties are made clear us-

ing n dimensional geometry and it is shown that the matrix rotates
any cepstrum vector similarly and apparently. Experimental results

using resynthesized speech demonstrate that cepstrum vectors ex-

tracted from a speaker of 180 [cm] in height and those from another

speaker of 120 [cm] in height are reasonably orthogonal. This result

makes clear one of the reasons why children’s speech is very difcult

for conventional speech recognizers to deal with adequately.

Index Terms— frequency warping, cepstrum, rotation, rotation

matrix, vocal tract length

1. INTRODUCTION

Speech acoustics vary due to differences in gender, age, microphone,

room, lines, and a variety of factors. These factors strongly inuence

the accuracy of speech recognition. To deal with these variations,

usually, thousands of speakers in different conditions are prepared

to train acoustic models of the individual phonemes; called speaker-

independent (SI) system. However, the recognition accuracy of SI

systems is sometimes very low for certain individuals, such as chil-

dren. It means that the SI systems are not really SI.

To overcome the above problem, speaker normalization has been

used in many systems. Speaker normalization techniques can be di-

vided into two approaches; one based on subtraction or taking dif-

ferential and the other based on transformation. Cepstrum mean nor-

malization (CMN) and the use of∆cepstrums correspond to the for-
mer, and vocal tract length normalization (VTLN) to the latter.

In CMN, the long-term average of the cepstrum is subtracted

from each cepstrum frame [1]. This helps eliminate changes created

not only by differences among individuals, but also by channel dif-

ferences. The use of ∆cepstrums is also based on subtracting the
cepstrum of the previous frame from that of the current one.

VTLN techniques are widely used to cancel the difference of vo-

cal tract length (VTL) [2]. In VTLN, the transformation matrix in a

cepstrum space is estimated and used to transform the VTL of an in-

put speaker to a predened value. In this paper, a special emphasis is

put on the transformation matrix, whose geometrical properties have

not been well discussed. We mathematically and experimentally in-

0
0 π

π

α= 0.5

α= -0.25

α= 0.25

ω

ω̂

Fig. 1. Examples of frequency warping functions for different values

of α. α < 0 transforms VTL shorter and α > 0 does VTL longer.

vestigate how the transformation matrix inuences cepstrum vectors

and their∆s and∆∆s.

2. DIFFERENCE IN VTL AND ITS EFFECTS

2.1. Frequency warping

The difference in VTL is often modeled by a warping function in

a spectrum space. We employ a rst order all-pass transform as a

warping function here. The all-pass transform is described as

ẑ−1 =
z−1 − α
1 − αz−1

, z = ejω, ẑ = ejω̂, (1)

where α is a warping parameter and |α| < 1; ω and ω̂ are frequen-
cies before and after transformation, respectively. In case of α < 0,
formants are shifted to be lower and the VTL is transformed to be

longer. α > 0 brings about the opposite effect. Figure 1 shows a
few examples of warping functions.

2.2. Linear modeling of frequency warping

We now describe a frequency warping by a linear transformation.

Emori [3] converted a frequency warping of Equation 1 to a linear

transformation in a cepstrum space. If power coefcients (c0 and ĉ0)

are not considered, a frequency warping can be expressed as

ĉ = A c, (2)
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the accuracy of speech recognition. To deal with these variations,

usually, thousands of speakers in different conditions are prepared

to train acoustic models of the individual phonemes; called speaker-

independent (SI) system. However, the recognition accuracy of SI

systems is sometimes very low for certain individuals, such as chil-

dren. It means that the SI systems are not really SI.

To overcome the above problem, speaker normalization has been

used in many systems. Speaker normalization techniques can be di-

vided into two approaches; one based on subtraction or taking dif-

ferential and the other based on transformation. Cepstrum mean nor-

malization (CMN) and the use of∆cepstrums correspond to the for-
mer, and vocal tract length normalization (VTLN) to the latter.

In CMN, the long-term average of the cepstrum is subtracted

from each cepstrum frame [1]. This helps eliminate changes created

not only by differences among individuals, but also by channel dif-

ferences. The use of ∆cepstrums is also based on subtracting the
cepstrum of the previous frame from that of the current one.

VTLN techniques are widely used to cancel the difference of vo-

cal tract length (VTL) [2]. In VTLN, the transformation matrix in a

cepstrum space is estimated and used to transform the VTL of an in-

put speaker to a predened value. In this paper, a special emphasis is

put on the transformation matrix, whose geometrical properties have
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formants are shifted to be lower and the VTL is transformed to be
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2.2. Linear modeling of frequency warping

We now describe a frequency warping by a linear transformation.

Emori [3] converted a frequency warping of Equation 1 to a linear

transformation in a cepstrum space. If power coefcients (c0 and ĉ0)
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ĉ1

ĉ2
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ĉ = (ĉ1 ĉ2 ĉ3 ĉ4· · · )t

A=

0

BBBB@

1−α2 2α−2α3 · · · · · ·
−α+α3 1−4α2+3α4 · · · · · ·

...
...

...
...

...
...

...
...

1

CCCCA
(3)

c = (c1c2c3c4· · · )t.

From Pitz [4], the element aij of matrix A can be written using the

warping parameter α as

aij =
1

(j − 1)!

jX

m=max(0,j−i)

 
j
m

!

× (m + i − 1)!
(m + i − j)!

(−1)mα(2m+i−j), (4)

where  
j
m

!
=

(
jCm (j ≥ m)

0 (j < m).
(5)

3. ROTATION IN A CEPSTRUM SPACE

3.1. Rotation in a two dimensional cepstrum space

In this section, we discuss the properties of matrix A in Equation

(3) geometrically. To facilitate the discussion, at rst, we focus on

the rst and second dimensions of the cepstrum space. Then, the

discussion will be expanded into n dimensions.
In the two dimensional space, Equation (2) is

„
ĉ1
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Fig. 6. Relation between the rotation angle and the estimated body height. (a) to (c) are from a male speaker of 180 cm in height and (d) to

(f) are from a female speaker of 163 cm in height.

4.2. Results and discussions

Figure 6 shows the rotation angles calculated as a function of the

estimated body height. The top three are from the male speaker and

the bottom three are from the female speaker. The two in the left, the

two in the center, and the two in the right are for MFCC, its ∆, and
its∆∆, respectively. Each graph contains the results obtained at the
four transient positions in the /aiueo/ utterance. As we predicted in

the previous section, the rotation is observed reasonably irrespective

of gender, phoneme, and the number of differential operations. It

is interesting to see in Figure 6(b), for example, that ∆MFCCs of a
male speaker of 180 cm in height and those of its warped speaker to

be 120 cm in height are orthogonal. We can say that the direction

of cepstrum-based parameters is rotated slowly as the speaker grows

up. These results imply that the directional dependency of cepstrum

coefcients on VTL can be used as one of the effective features for

age (VTL) estimation. Further, we consider that these results clarify

quantitatively one of the reasons why conventional speech recogniz-

ers work poorly with children’s speech.

As told in Section 1, some acoustic distortions can be effectively

canceled by differential operations but the distortion examined in

this paper cannot be canceled by these operations at all. If a param-

eter is dened as vector in an acoustic space, such as ∆cepstrum,
it will inevitably has this kind of distortion. We already proposed

another framework which uses only scalar-based parameters which

are invariant with the above two types of distortions. [7] showed

that a small number of training speakers could provide the acoustic

models for SI speech recognition because the proposed scalar-based

parameters cannot see the two types of distortions at all.

5. CONCLUSIONS

In this paper, we have mathematically and experimentally proved

that cepstrum coefcients are strongly dependent on vocal tract length

difference and this dependency is represented as rotation in a cep-

strum space. Further, the rotation angle is shown to be independent

of speaker, phoneme, and the number of differential operations. This

dependency may be an effective feature for age identication. In the

experiment, it was also shown that two vectors in one category can be

orthogonal if they are from speakers with very different body height.

The conventional acoustic modeling framework collected these very

different data to be modeled as one statistical model. We consider

whether this strategy is reasonable enough geometrically.
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Utterance to structure conversion using f-div. [Minematsu’06] 

  
An event (distribution) may be smaller than a phoneme.
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c3c2
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cD

c4
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Bhattacharyya distance

BD-based distance matrix

Invariant speech structure

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events
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Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events
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Structuralization by interrelating temporally-distant events

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

spectrogram (spectrum slice sequence)

cepstrum vector sequence

distribution sequence



A claim found in classical linguistics

Theory of relational invariance [Jakobson+’79] 
Also known as theory of distinctive features 

Proposed by R. Jakobson

We have to put aside the accidental properties of 
individual sounds and substitute a general expression 
that is the common denominator of these variables.

Physiologically identical sounds may possess different 
values in conformity with the whole sound system, i.e. 
in their relations to the other sounds.

c 1 

c 3 c 2 

c 4 

c D 



More classical claims in linguistics

Nikolay Sergeevich Trubetskoy (1890-1938) 
“The Principles of Phonology” (1939) 

The phonemes should not be considered as building blocks out of which 
individual words are assembled. Each word is a phonic entity, a Gestalt, 
and is also recognized as such by the hearer.
As a Gestalt, each word contains something more than sum of its 
constituents (phonemes), namely, the principle of unity holds the 
phoneme sequence together and lends individuality to a word.

c 1 

c 3 c 2 

c 4 

c D 

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events



More classical claims in linguistics

Ferdinand de Saussure (1857-1913) 
Father of modern linguistics 

“Course in General Linguistics” (1916) 

What defines a linguistic element, conceptual or phonic, is the relation in 
which it stands to the other elements in the linguistic system.
The important thing in the word is not the sound alone but the phonic 
differences that make it possible to distinguish this word from the others.
Language is a system of only conceptual differences and phonic 
differences.
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c D 



Invariant and constant perception wrt. color and pitch 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

Invariant timbre perception against its bias

 

A scale in LilyPond
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A scale in LilyPond

!! !" ! #$ $ %! ! !& !$ ! !! !

Music engraving by LilyPond 2.10.20—www.lilypond.org

Invariant and constant perception wrt. timbre 
Contrast-based information processing is important. 

Holistic & relational processing enables element identification.

c 1 
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c D 

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events



Menu of the last four lectures

Robust processing of easily changeable stimuli 
Robust processing of general sensory stimuli 

Any difference in the processing between humans and animals? 

Human development of spoken language 
Infants’ vocal imitation of their parents’ utterances 

What acoustic aspect of the parents’ voices do they imitate? 

Speaker-invariant holistic pattern in an utterance 
Completely transform-invariant features -- f-divergence -- 

Implementation of word Gestalt as relative timbre perception 

Application of speech structure to robust speech processing 

Radical but interesting discussion 
An interesting link to some behaviors found in language disorder 

An interesting thought experiment



!! Note !!

Next Tuesday (Dec 26) is a day for Friday classes. 

The next lecture will be held on Dec 25 (Monday). 
Dec 25 is a day for supplementary lectures. 

From 13:00 to 14:45 in room 246.

Dec 25 (Mon) 
13:00-14:45


