Cognitive Media Processing \#10

Nobuaki Minematsu

Cognitive Media Processing @ 2015

Title of each lecture

- Theme-1

- Alullimedia infermation and humans
- Multimedia information and interaction between humans and machines
- Aullimedia information used in expressive and omotional processing
- Aw onder fensation synesthesia
- Theme-2
- Speech communication technology articulatery \& acoustic phonetics
abcde g
h jk mn
pqr tu
vwxyz
- Speoch communication tochnology speech analysis
- Speech communication technology-speech recognition-
- Speech communication technelogy speoch synthesis-
- Theme-3
- Anow framowork for "human-like" speech machines \#1
- A new framework for "human-like" speech machines \#2
- A new framework for "human-like" speech machines \#3
- A new framework for "human-like" speech machines \#4

Speech is extremely variable.

- Various factors change speech acoustics easily.

The world's tiniest high school girl

A difference bet. machines and humans

Y Machine strategy (engineers' strategy): ASR

Q Collecting a huge amount of speaker-balanced data

Q Statistical training of acoustic models of individual phonemes (allophones)
Q Adaptation of the models to new environments and speakers
Q Acoustic mismatch bet. training and testing conditions must be reduced.

Human strategy: HSR

Q A major part of the utterances an infant hears are from its parents.
Q The utterances one can hear are extremely speaker-biased.
Q Infants don't care about the mismatch in lang. acquisition.
Q Their vocal imitation is not acoustic, it is not impersonation!!

Feature separation to find specific info.

\mathscr{L} De facto standard acoustic analysis of pitch differences

\% Two acoustic models for speech/speaker recognition
Q Speaker-independent acoustic model for word recognition
$Q P(o \mid w)=\sum_{s} P(o, s \mid w)=\sum_{s} P(o \mid w, s) P(s \mid w) \sim \sum_{s} \underline{P(o \mid w, s)} P(s)$
Q Text-independent acoustic model for speaker recognition

$$
P(o \mid s)=\sum_{w} P(o, w \mid s)=\sum_{w} P(o \mid w, s) P(w \mid s) \sim \sum_{w} \underline{P(o \mid w, s)} P(w)
$$

Q Require intensive collection
Q $o \rightarrow o_{w}+o_{s}$ is possible or not?

Insensitivity in our language learning

Vocal learning（including vocal imitation）

Q A imitate（s）B vocally．
Q A：students and B：teachers
Q A：infants and B：parents（caretakers）
Q A：you and B：professional singer（Karaoke）
Q But A do not impersonate B．
－Acoustically mismatched imitation．

Q We＇re very insensitive to speaker identity transmitted via speech．
\＆Acoustically matched imitation is often found in
Q Autistics（自閉症），who have language disorder［Grandin＇96］
Q Animals＇vocal imitation（birds，dolphins，whales，etc）［Okanoya＇08］

Insensitivity and sensitivity

© Infants' vocal learning is

Q insensitive to age and gender differences. (A)
Q sensitive to accent differences. (B)

- Infants' vocal learning seems to be

Q insensitive to feature instances and sensitive to feature relations.

Q $(\mathbf{A})=$ instances and $(\mathbf{B})=$ relations.
Q Relations, i.e., shape of distribution can be represented geometrically as distance matrix.

formant frequencies of adults and children

I Williamsport, PA

Distribution of normalized formants among AE dialects [Labov et al.'05]

A claim found in classical linguistics

- Theory of relational invariance [Jakobson+'79]

Q Also known as theory of distinctive features
Q Proposed by R. Jakobson
We have to put aside the accidental properties of individual sounds and substitute a general expression that is the common denominator of these variables.

Physiologically identical sounds may possess different values in conformity with the whole sound system, i.e. in their relations to the other sounds.

Invariant pitch perception against its bias

© Key change（transposition）of a melody［Higashikawa＇05］

Q Absolute（perfect）pitch（Do，Re，Mi．．．＝pitch names）（音名）
Q 1 ＝So，Mi，So，Do，La，Do，Do，So． $2=$ Re，Ti，Re，So，Mi，So，So，Re．
Q Relative pitch with transcription ability（Do，Re．．．＝syllable names）
© $1=$ So，Mi，So，Do，La，Do，Do，So． $2=$ So，Mi，So，Do，La，Do，Do，So．
Q Relative pitch without transcription ability
Q 1 ＝La，La，La，La，La，La，La，La． $2=$ La，La，La，La，La，La，La，La
Q Different／identical tones are claimed to be identical／different．
Q Not fundamental frequency（absolute property）of each tone，but it only matters what contrast each tone has to its surrounding tones．

Relative pitch vs. relative timbre

Key-invariant arrangement of tones and its variants

Q Western $=5$ whole +2 semi
Q D to I = classical church music
Q Arabic $=$ with non-semi intervals
Q Western music in Arabic scale
$\mathrm{D}=$ Dorian, $\mathrm{P}=$ Phrygian, $\mathrm{L}=$ Lydian, $\mathrm{M}=$ Mixolydian
A=Aeolian, $\mathrm{I}=$ Ionian, $\mathrm{AR}=$ Arabian
© Spk-invariant arrangement of vowels and its variants

Chicago, IL

Invariant color perception against its bias

The Rubik's cube seen through colored glasses [Lotto'99]

Q We perceive that the two cubes are identical.
Q Different / identical colors are claimed to be identical / different.
Q Not only wavelength (absolute property) of each patch, but also it matters what contrast each patch has to its surrounding patches.

An evolutional point of view

How old is the relative perception in evolution? [Briscoe'01]

An evolutional point of view

How old is the relative perception in evolution? [Hauser'03]

Language acquisition through vocal imitation

VI = children's active imitation of parents' utterances
Q Language acquisition is based on vocal imitation [Jusczyk'00].
Q VI is very rare in animals. No other primate does VI [Gruhn'06].
Q Only small birds, whales, and dolphins do VI [Okanoya'08].
A's VI = acoustic imitation but H's VI \neq acoustic $=$? ?
Q Acoustic imitation performed by myna birds [Miyamoto'95]
Q They imitate the sounds of cars, doors, dogs, cats as well as human voices.
Q Hearing a very good myna bird say something, one can guess its owner.
Q Beyond-scale imitation of utterances performed by children
Q No one can guess a parent by hearing the voices of his/her child.
Q Very weird imitation from a viewpoint of animal science [Okanoya'08].

Language acquisition through vocal imitation

- Utterance \rightarrow symbol sequence \rightarrow production of each sym.

Q Phonemic awareness is too poor to decompose an utterance.

- Several answers from developmental psychology

Q Holistic/related sound patterns embedded in utterances
Q Holistic wordform [Kato'03]
Q Word Gestalt [Hayakawa'06]
Q Related spectrum pattern [Lieberman'80]
Q The patterns have to include no speaker information in themselves.
Q If they do it, children have to try to impersonate their fathers.
Q What is the speaker-invariant and holistic pattern in an utterance?

Invariant timbre perception against its bias

- Invariant and constant perception wrt. color and pitch

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

- Invariant and constant perception wrt. timbre

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

A new framework for "human-like" speech machines \#2

Nobuaki Minematsu

Menu of the last four lectures

Robust processing of easily changeable stimuli
Q Robust processing of general sensory stimuli
Q Any difference in the processing between humans and animals?

Human development of spoken language

Q Infants' vocal imitation of their parents' utterances
Q What acoustic aspect of the parents' voices do they imitate?
\% Speaker-invariant holistic pattern in an utterance
Q Completely transform-invariant features -- f-divergence --
Q Implementation of word Gestalt as relative timbre perception
Q Application of speech structure to robust speech processing
Radical but interesting discussion
Q An interesting link to some behaviors found in language disorder
Q An interesting thought experiment

Impersonation vs. non-impersonation

\& A very talented impersonator of Seiko Matsuda

Seiko's impersonator

Seiko's daughter

Language acquisition through vocal imitation

VI = children's active imitation of parents' utterances
Q Language acquisition is based on vocal imitation [Jusczyk'00].
Q VI is very rare in animals. No other primate does VI [Gruhn'06].
Q Only small birds, whales, and dolphins do VI [Okanoya'08].
A's VI = acoustic imitation but H's VI \neq acoustic $=$? ?
Q Acoustic imitation performed by myna birds [Miyamoto'95]
Q They imitate the sounds of cars, doors, dogs, cats as well as human voices.
Q Hearing a very good myna bird say something, one can guess its owner.
Q Beyond-scale imitation of utterances performed by children
Q No one can guess a parent by hearing the voices of his/her child.
Q Very weird imitation from a viewpoint of animal science [Okanoya'08].

"I impersonate a language teacher."

Some comments from an autistic women
Q Q: "How do you do vocal imitation in a Karaoke box or in a class of foreign languages?"
Q A: "I impersonate a professional singer or a teacher."
Q B: "Acoustic imitation seems to be her default strategy of vocal imitation."
Q A: "Spoken language is difficult to use."
Q A: "Written language and sign language are much easier."

TV program with talented impersonators

- Can you enjoy such a TV program? Q I cannot understand what is amusing.
- Can you perceive any similarity between these pictures? Q No. I believe that this is much similar to this picture.
Robust perception of equivalence against deformation Q Our perception is very robust with a certain kind of deformation.

TV program with talented impersonators

- Can you enjoy such a TV program? Q I cannot understand what is amusing.
- Can you perceive any similarity between these pictures? Q No. I believe that this is much similar to this picture.
\& Robust perception of equivalence against deformation Q Our perception is very robust with a certain kind of deformation.

Non-robustness with other deformation
Thatcher illusion

Non-robustness with other deformation
Thatcher illusion

Non-robustness with other deformation

© Thatcher illusion

Claims from a professor of animal sciences

- Dr. Temple Grandin @ Colorado State University

Q She is herself autistic (Asperger syndrome).
Q Autistics often imitate the utterances of TV/radio commercials.
Q TV/radio often gives "acoustically" identical utterances.
Q The utterances from family members change "acoustically" time to time.
Q They often imitate the sounds of objects such as cars, doors, etc.
Q These sounds, including human voices, are just acoustic sounds.

- Interesting claims from her

Q Similarity of information processing between animals and autistics
Q Storing the detailed aspects of input stimuli as they are in the brain
Q Animal : local / detail / absolute
Q Human : holistic / abstract / relative
6 Good ability to generalize

A claim found in classical linguistics

- Theory of relational invariance [Jakobson+'79]

Q Also known as theory of distinctive features
Q Proposed by R. Jakobson
We have to put aside the accidental properties of individual sounds and substitute a general expression that is the common denominator of these variables.

Physiologically identical sounds may possess different values in conformity with the whole sound system, i.e. in their relations to the other sounds.

Temple Grandin＇s TED talk

You can hear her talk at TED．

TED
 Ideas worth
 spreading

Triks
Speakers
Playlists 葆w
Translations

TED Conference
TEDX Events
TED Prize
TED Faliows

TED Conversations	About TED
TED Community	TED Blog
TED－Ed of	TED Initiatives
Q Search	

We＇re creating a new TED．com experience．
Want to try it out？Request an invitation today．

TALKS

テンプル・グランディン：世界はあらゆる頭脳を必要としている
FLMED FEB 2010 －POSTED FEB 2010 －TED2010
\rangle Embod \pm Downioad \neq Ravorite Show transcript v

[^0]
2，089，794 Views

flike $\{1.7 \mathrm{k}$
子供の頃に自閉症と診懨されたテンフル・クラランデイン
考える＂能力が，一般的な䋨が見落としがちな問題の解決に役立つと言います。世界は，自閉症の領域にあると される人たちー視覚型思考者，バターン型思考者，言栖型思考者や全ての風変わりな天才湋一をめ要としている と話えます。

Through groundbreaking research and the lens of her own autism，Temple Grandin brings starting insight into two worlds．Full bio ${ }^{p}$

Translatod into Japanese by Satoru Arao ${ }^{\text {Cl }}$
Reviewed by Takako Satol
Reviewed by Takako Sato区
Comments？Please email the transtators above．
More taks transiated into Japanese ．

A book written by an autistic boy

"I can understand my mother's utterances only".

http://www.nhk.or.jp/school-blog/300/195393.html

Insensitivity and sensitivity

© Infants' vocal learning is

Q insensitive to age and gender differences. (A)
Q sensitive to accent differences. (B)

- Infants' vocal learning seems to be

Q insensitive to feature instances and sensitive to feature relations.

Q $(\mathbf{A})=$ instances and $(\mathbf{B})=$ relations.
Q Relations, i.e., shape of distribution can be represented geometrically as distance matrix.

formant frequencies of adults and children

Distribution of normalized formants among AE dialects [Labov et al.'05]

An interesting book

Menu of the last four lectures

Robust processing of easily changeable stimuli
Q Robust processing of general sensory stimuli
Q Any difference in the processing between humans and animals?
\% Human development of spoken language
Q Infants' vocal imitation of their parents' utterances
Q What acoustic aspect of the parents' voices do they imitate?
jpeaker-invariant holistic pattern in an utterance
Q Completely transform-invariant features -- f-divergence --
Q Implementation of word Gestalt as relative timbre perception
Q Application of speech structure to robust speech processing
Radical but interesting discussion
Q An interesting link to some behaviors found in language disorder
Q An interesting thought experiment

Invariant timbre perception against its bias

- Invariant and constant perception wrt. color and pitch

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

- Invariant and constant perception wrt. timbre

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

Invariant pitch perception against its bias

© A melody and its transposed version [Higashikawa'05]

Q Listeners with RP can perceive the same sound name sequence.
Q So Mi So Do / Ra Do Do So / So Do Re Mi Re Do / Re
Q The same sound distribution pattern is found in 1) and 2).

Whole = 2 Semi

- and have to be fa \& ti or ti \& fa due to contrastive constraints.

Relative pitch vs. relative timbre

pitch modulation

$\log (\mathrm{F} 0)$

key change

timbre modulation

Relative pitch vs. relative timbre

Key-invariant arrangement of tones and its variants

Q Western $=5$ whole +2 semi
Q D to I = classical church music
Q Arabic $=$ with non-semi intervals
Q Western music in Arabic scale
$\mathrm{D}=$ Dorian, $\mathrm{P}=$ Phrygian, $\mathrm{L}=$ Lydian, $\mathrm{M}=$ Mixolydian
A=Aeolian, $\mathrm{I}=$ Ionian, $\mathrm{AR}=$ Arabian
© Spk-invariant arrangement of vowels and its variants

Chicago, IL

Relative pitch vs. relative timbre

pitch modulation

$\log (\mathrm{F} 0)$

key change

timbre modulation

Invariant pitch perception against its bias

© Key change（transposition）of a melody［Higashikawa＇05］

Q Absolute（perfect）pitch（Do，Re，Mi．．．＝pitch names）（音名）
Q 1 ＝So，Mi，So，Do，La，Do，Do，So． $2=$ Re，Ti，Re，So，Mi，So，So，Re．
Q Relative pitch with transcription ability（Do，Re．．．＝syllable names）
© $1=$ So，Mi，So，Do，La，Do，Do，So． $2=$ So，Mi，So，Do，La，Do，Do，So．
Q Relative pitch without transcription ability
Q 1 ＝La，La，La，La，La，La，La，La． $2=$ La，La，La，La，La，La，La，La
Q Different／identical tones are claimed to be identical／different．
Q Not fundamental frequency（absolute property）of each tone，but it only matters what contrast each tone has to its surrounding tones．

What's difficult only with relative timbre?

People with RP who can transcribe a melody cannot Q label a single tone using a pitch name or a syllable name. Q Who cannot label a single speech sound (vowel sound)?
\neq Identification of vowels produced by giants and fairies
Q Difficult to label isolated vowel sounds [Aoki'04]
Q Possible to transcribe a meaningless sequence of morae [Hayashi'07]

What's difficu

People with RP wh
Q label a single tone u Q Who cannot label a $\%$ Identification of \mathbf{v}
Q Difficult to label iso
Q Possible to transcrib
melody cannot syllable name. vowel sound)? giants and fairies , $\left.\mathrm{ki}^{\prime} 04\right]$
nce of morae [Hayashi'07]

What's diffic ${ }^{\text {It anl. ...isth nolative timbre? }}$

© People with RP v
Q label a single tone
Q Who cannot label
Identification of
Q Difficult to label is
Q Possible to transcr
 nelody cannot yllable name. wel sound)? jiants and fairies 04]
e of morae [Hayashi'07]

Phonetic identification ability of isolated sounds may be unnecessary for oral communication?

Phoneme awareness is not needed for speech communication?

Invariant pitch perception against its bias

© Key change（transposition）of a melody［Higashikawa＇05］

Q Absolute（perfect）pitch（Do，Re，Mi．．．＝pitch names）（音名）
Q 1 ＝So，Mi，So，Do，La，Do，Do，So． $2=$ Re，Ti，Re，So，Mi，So，So，Re．
Q Relative pitch with transcription ability（Do，Re．．．＝syllable names）
© $1=$ So，Mi，So，Do，La，Do，Do，So． $2=$ So，Mi，So，Do，La，Do，Do，So．
Q Relative pitch without transcription ability
Q 1 ＝La，La，La，La，La，La，La，La． $2=$ La，La，La，La，La，La，La，La
Q Different／identical tones are claimed to be identical／different．
Q Not fundamental frequency（absolute property）of each tone，but it only matters what contrast each tone has to its surrounding tones．

Another difficult task for RP listeners

\neq Difficult task for those who cannot transcribe a melody
Q Keep the third tone in a given melody in mind. Then, raise your hand if you find the same tone in a new melody.
Q If symbolic labeling is difficult, this task is very difficult.
\nsubseteq Difficult task for the speech version of these people
Q Keep the third sound in a given utterance in mind. Then, raise your hand if you find the same sound in a new utterance.
Q If symbolic labeling is difficult, this task is very difficult.

Another difficult task for RP listeners

\notin Difficult task for those who cannot transcribe a melody
Q Keep the third tone in a given melody in mind. Then, raise your hand if you find the same tone in a new melody.
Q If symbolic labeling is difficult, this task is very difficult.
\notin Difficult task for the speech version of these people
Q Keep the third sound in a given utterance in mind. Then, raise your hand if you find the same sound in a new utterance.
Q If symbolic labeling is difficult, this task is very difficult.

In E-speaking countries, there have to be people who have severe troubles in reading and writing?

Another difficult task for RP listeners

- Difficult task for those who cannot transcribe a melody

Q Keep the third tone in a given melody in mind. Then, raise your hand if you find the same tone in a new melody.
Q If symbolic labeling is difficult, this task is very difficult.
\notin Difficult task for the speech version of these people
Q Keep the third sound in a given utterance in mind. Then, raise your hand if you find the same sound in a new utterance.
Q If symbolic labeling is difficult, this task is very difficult.

Dyslexia (phonological dyslexia)

Dyslexia (phonological dyslexia)

How I encountered dyslexia．

あ」という声を聞いて母音「あ」と同定する能力は音声言語運用に必要か？

"Separately brought up identical twins"

- The parents get divorced immediately after the birth.

Q The twins were brought up separately by the parents.
Q What kind of pron. will the twins have acquired 5 years later?

Diff. of VTL = Diff. of timbre

Menu of the last four lectures

Robust processing of easily changeable stimuli
Q Robust processing of general sensory stimuli
Q Any difference in the processing between humans and animals?
\# Human development of spoken language
Q Infants' vocal imitation of their parents' utterances
Q What acoustic aspect of the parents' voices do they imitate?
\& Speaker-invariant holistic pattern in an utterance
© Completely transform-invariant features -- f-divergence --
Q Implementation of word Gestalt as relative timbre perception
Q Application of speech structure to robust speech processing
Radical but interesting discussion
Q An interesting link to some behaviors found in language disorder
Q An interesting thought experiment

Relative pitch vs. relative timbre

pitch modulation

$\log (\mathrm{F} 0)$

key change

timbre modulation

Definition of the shape of a thing

- Triangle

(L1, L2, L3)

N-point general geometrical structure

$$
\begin{aligned}
& \mathbf{a} \\
& \mathbf{a} \\
& \mathbf{c} \\
& \mathbf{d} \\
& \mathbf{e}
\end{aligned}\left[\begin{array}{cccc}
\mathbf{a} & \mathbf{b} & & \mathbf{e} \\
d_{11} & d_{12} & \ldots & d_{1 N} \\
d_{21} & d_{22} & \ldots & d_{2 N} \\
d_{31} & & & \\
\vdots & & & \\
d_{N 1} & d_{N 2} & \ldots & d_{N N}
\end{array}\right]
$$

Math. modeling of speaker variability

- Speaker difference = mapping of a voice space

Q Space of speaker $A \leftrightarrow$ space of speaker B

Mapping of speaker A into any of 7 billion speakers
$Q 7$ billion $\times 7$ billion transformations are possible.
Q Truly speaker-independence = mapping-invariant contrasts
Q Are there any contrastive features that are invariant with any mapping?

Complete transform-invariance

- Complete invariance between two spaces

Q An assumption
Q The transform is convertible and differentiable anywhere.
Q An event in a space should be represented as distribution.
Q Event p in space A is transformed into event P in space B
Q p and P are physically different ($/ \mathrm{a} /$ of speaker A and $/ \mathrm{a} /$ of speaker B)

Complete transform-invariance

- Variable conversion and integral

Q A single variable: $x=x(t) \quad\left(x_{1}=x\left(t_{1}\right), x_{2}=x\left(t_{2}\right)\right)$

$$
\int_{x_{1}}^{x_{2}} f(x) d x=\int_{t_{1}}^{t_{2}} f(x(t)) \frac{d x(t)}{d t} d t=\int_{t_{1}}^{t_{2}} g(t) x^{\prime}(t) d t
$$

Q Two variables: $x=x(u, v), y=y(u, v)$

$$
\begin{aligned}
& x=3 u+2 v-5 \\
& y=4 u+5 v+3
\end{aligned}
$$

$\iint_{A} f(x, y) d x d y=\iint_{B} f(x(u, v), y(u, v))|J(u, v)| d u d v$
$=\iint_{B} g(u, v)|J(u, v)| d u d v \quad J(u, v) \equiv \frac{\partial(x, y)}{\partial(u, v)} \equiv \operatorname{det}\left[\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right]$

Complete transform-invariance

- Variable conversion and probability density function

Q A single variable: $x=x(t) \quad\left(x_{1}=x\left(t_{1}\right), x_{2}=x\left(t_{2}\right)\right)$

$$
1.0=\int_{x_{1}}^{x_{2}} p(x) d x=\int_{t_{1}}^{t_{2}} p(x(t)) \frac{d x(t)}{d t} d t=\int_{t_{1}}^{t_{2}} q(t) x^{\prime}(t) d t
$$

Q Two variables: $x=x(u, v), y=y(u, v)$

$$
\begin{aligned}
& x=3 u+2 v-5 \\
& y=4 u+5 v+3
\end{aligned}
$$

$1.0=\iint_{A} f(x, y) d x d y=\iint_{B} f(x(u, v), y(u, v))|J(u, v)| d u d v$
$=\iint_{B} g(u, v)|J(u, v)| d u d v \quad J(u, v) \equiv \frac{\partial(x, y)}{\partial(u, v)} \equiv \operatorname{det}\left[\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right]$

Complete transform-invariance

- Bhattacharyya distance

Q One of the distance measures bet. two distributions
Q $x=x(u, v), y=y(u, v)$

- $B D\left(p_{1}(x, y), p_{2}(x, y)\right)$

$=-\log \iint \sqrt{p_{1}(x, y) p_{2}(x, y)} d x d y$
$=-\log \iint \sqrt{q_{1}(u, v) q_{2}(u, v)}|J(u, v)| d x d y$
$=-\log \iint \sqrt{q_{1}(u, v)|J(u, v)| \cdot q_{2}(u, v)|J(u, v)|} d u d v$
$=-\log \iint \sqrt{P_{1}(u, v) P_{2}(u, v)} d u d v$
$=B D\left(P_{1}(u, v), P_{2}(u, v)\right)$
$q_{1}(u, v)=p_{1}(x(u, v), y(u, v)), \quad J=$ Jacobian

Complete transform-invariance

Complete invariance between two spaces

Q An assumption
Q The transform is convertible and differentiable anywhere.
Q An event in a space should be represented as distribution.
Q Event p in space A is transformed into event P in space B
Q p and P are physically different ($/ \mathrm{a} /$ of speaker A and $/ \mathrm{a} /$ of speaker B)

Complete transform-invariance

\& Any general expression for invariance? [Qiaó10]

Q BD is just one example of invariant contrasts.
Q f-divergence is invariant with any kind of transformation.

- $f_{\text {div }}\left(p_{1}, p_{2}\right)=\int p_{2}(\boldsymbol{x}) g\left(\frac{p_{1}(\boldsymbol{x})}{p_{2}(\boldsymbol{x})}\right) d \boldsymbol{x}$
- $g(t)=t \log (t) \rightarrow f_{\text {div }}=\mathrm{KL}-$ div. $g(t)=\sqrt{t} \rightarrow-\log \left(f_{\text {div }}\right)=\mathrm{BD}$
- $f_{d i v}\left(p_{1}, p_{2}\right)=f_{\text {div }}\left(P_{1}, P_{2}\right)$
Q Invariant features have to be f-divergence.
Q If $\int M\left(p_{1}(\boldsymbol{x}), p_{2}(\boldsymbol{x})\right) d \boldsymbol{x}$ is invariant with any transformation,
Q M has to be in the form of $M=p_{2}(\boldsymbol{x}) g\left(\frac{p_{1}(\boldsymbol{x})}{p_{2}(\boldsymbol{x})}\right)$

Invariance in variability

- Topological invariance [Minematsu'09]

Q Topology focuses on invariant features wrt. any kind of deformation.

Invariance in variability

- Topological invariance [Minematsu'09]

Q Topology focuses on invariant features wrt. any kind of deformation.

Invariant speech structure

- Utterance to structure conversion using f-div. [Minematsu'06]

Q An event (distribution) may be smaller than a phoneme.

Speech modification by VTLD

- Speech modification by non-linguistic factors

VTL-based variation $=\times$ matrix \mathbf{A}

\neq Vocal tract length variation

Q Can be approximated as multiplication of matrix A in cep. domain.
$\notin \mathrm{A}$ is represented as warping parameter α.

$\hat{z}^{-1}=\frac{z^{-1}-\alpha}{1-\alpha z^{-1}}, \quad z=e^{j \omega}, \hat{z}=e^{j \hat{\omega}}$
$\hat{c}=\left(\hat{c}_{1} \hat{c}_{2} \hat{c}_{3} \hat{c}_{4} \cdots\right)^{t}$
$1-\alpha^{2} \quad 2 \alpha-2 \alpha^{3}$
$-\alpha+\alpha^{3} \quad 1-4 \alpha^{2}+3 \alpha^{4}$
$A=$
\vdots
\vdots
$\left.c_{3} c_{4} \cdots\right)^{t}$.

$$
\boldsymbol{c}=\left(c_{1} c_{2} c_{3} c_{4} \cdots\right)^{t}
$$

$$
=\frac{1}{(1-1)} \sum_{n}^{\prime} \sum_{m-1}\binom{5}{m}
$$

$a_{i j}=\frac{1}{(j-1)!} \sum_{m=\max (0, j-i)}^{j}\binom{j}{m} \times \frac{(m+i-1)!}{(m+i-j)!}(-1)^{m} \alpha^{(2 m+i-j)}$

$$
c^{\prime}=A c
$$

Geometrical characteristics of A

$$
\begin{gathered}
\binom{\hat{c}_{1}}{\hat{c}_{2}}=\left(\begin{array}{c}
1-\alpha^{2} \\
-\alpha+\alpha^{3} \\
1-4 \alpha^{2}+3 \alpha^{4}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
\boldsymbol{T}=\boldsymbol{R}+\boldsymbol{O} \\
\boldsymbol{R}=\left(\begin{array}{cc}
1-2 \alpha^{2} & 2 \alpha\left(1-\frac{1}{2} \alpha^{2}\right) \\
-2 \alpha\left(1-\frac{1}{2} \alpha^{2}\right) & 1-2 \alpha^{2}
\end{array}\right) \\
\boldsymbol{O}=\left(\begin{array}{cc}
\alpha^{2} & -\alpha^{3} \\
-\alpha & -2 \alpha^{2}+3 \alpha^{4}
\end{array}\right) .
\end{gathered}
$$

$$
\begin{aligned}
\boldsymbol{R} & \simeq\left(\begin{array}{cc}
1-2 \alpha^{2} & 2 \alpha \sqrt{1-\alpha^{2}} \\
-2 \alpha \sqrt{1-\alpha^{2}} & 1-2 \alpha^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right)(\alpha=\sin \theta)
\end{aligned}
$$

$\boldsymbol{A}=\left(\begin{array}{cccc}1-\alpha^{2} & 2 \alpha-2 \alpha^{3} & \cdots & \cdots \\ -\alpha+\alpha^{3} & 1-4 \alpha^{2}+3 \alpha^{4} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots\end{array}\right)$

Is it the case in N dimensions?

Geometrical characteristics of A

What is the rotation matrix in an N dimensional space?
$\boldsymbol{R}^{t} \boldsymbol{R}=\boldsymbol{R} \boldsymbol{R}^{t}=\boldsymbol{I}$ $\operatorname{det} \boldsymbol{R}=+1$.

$$
a_{i j}=\frac{1}{(j-1)!} \sum_{m=\max (0, j-1)}^{j}\binom{j}{m} \times \frac{(m+i-1)!}{(m+i-j)!}(-1)^{m} \alpha^{(2 m+i-j)}
$$ satisfied this condition approximately.

- Frequency warping can rotate any cepstrum trajectory.

(a):MFCC (male)

(d):MFCC (female)

Invariant speech structure

- Utterance to structure conversion using f-div. [Minematsu'06]

Q An event (distribution) may be smaller than a phoneme.

A claim found in classical linguistics

Theory of relational invariance [Jakobson+'79]
Q Also known as theory of distinctive features
Q Proposed by R. Jakobson
We have to put aside the accidental properties of individual sounds and substitute a general expression that is the common denominator of these variables.

Physiologically identical sounds may possess different values in conformity with the whole sound system, i.e. in their relations to the other sounds.

More classical claims in linguistics

© Nikolay Sergeevich Trubetskoy (1890-1938)

Q "The Principles of Phonology" (1939)
Q The phonemes should not be considered as building blocks out of which individual words are assembled. Each word is a phonic entity, a Gestalt, and is also recognized as such by the hearer.
Q As a Gestalt, each word contains something more than sum of its constituents (phonemes), namely, the principle of unity holds the phoneme sequence together and lends individuality to a word.

More classical claims in linguistics

Ferdinand de Saussure (1857-1913)

Q Father of modern linguistics
Q "Course in General Linguistics" (1916)
Q What defines a linguistic element, conceptual or phonic, is the relation in which it stands to the other elements in the linguistic system.
Q The important thing in the word is not the sound alone but the phonic differences that make it possible to distinguish this word from the others.
Q Language is a system of only conceptual differences and phonic differences.

$$
\left[\begin{array}{cccc}
d_{11} & d_{12} & \cdots & d_{1 N} \\
d_{21} & d_{22} & \cdots & d_{2 N} \\
d_{31} & & & \\
: & & & \\
d_{N 1} & d_{N 2} & \cdots & d_{N N}
\end{array}\right]
$$

Invariant timbre perception against its bias

- Invariant and constant perception wrt. color and pitch

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

- Invariant and constant perception wrt. timbre

Q Contrast-based information processing is important.
Q Holistic \& relational processing enables element identification.

Menu of the last four lectures

- Robust processing of easily changeable stimuli

Q Robust processing of general sensory stimuli
Q Any difference in the processing between humans and animals?
Human development of spoken language
Q Infants' vocal imitation of their parents' utterances
Q What acoustic aspect of the parents' voices do they imitate?
\% Speaker-invariant holistic pattern in an utterance
Q Completely transform-invariant features -- f-divergence --
Q Implementation of word Gestalt as relative timbre perception
Q Application of speech structure to robust speech processing
Radical but interesting discussion
Q An interesting link to some behaviors found in language disorder
Q An interesting thought experiment

!! Note !!

The next class on Dec 17 is cancelled.
Q Minematsu will attend a workshop in Okinawa.
The last two classes are given on
Q Dec 25 (Wed), starting at 14:55
Q Dec 24 (Tue) is a day for Friday classes.
Q Jan 7 (Tue), starting at 14:55.

[^0]: O Got thie tulk on DVD

