Cognitive Media Processing #7

Nobuaki Minematsu




Modeling of speech production

e Mathematical modeling of speech production -- source & filter model --
® Linear independence between source and filter
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Cognitive Media Processing @ 2015

Mathematical modeling of speech production -- source & filter model --

Separation between the spectrums of source and filter
fine structure of the spectrum
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Extraction of spectrum en

e Cepstrum method

® Windowing + FFT + log-amplitude --> a spectrum with pitch harmonics
* Smoothing (LPF) of the fine spectrum into its smoothed version
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Cognitive Media Processing @ 2015

Advanced technology for analysis

STRAIGHT [Kawahara'06]
High-quality analysis-resynthesis tool

Decomposition of speech into
Fundamental frequency, spectrographic representations of power, and that of periodicity

High-quality speech morphing tool

input Y periodicity map ) perlod|C|ty map resynthesize
speech \( spectrogram ) MOHES C spectrogram )I d

~\( T-F coordinate ) T-F coordinate )/

Spectrographic representation of power

FO adaptive complementary set of windows and spline based optimal smoothing
Instantaneous frequency based FO extraction

With correlation-based FO extraction integrated
Spectrographic representation of periodicity

Harmonic analysis based method




Examples of speech morphing

T (Ilove in Japanese) . T A (I'm sorry in Japanese) [loveyou (74 57 2-)

=y IlEghLTRIREZ U YD,

MEE I hO—JLLTHTLESZ W,
pleased 0%

Move the cursor and click the mouse to
control the "emotions”

angry 0%

sad 1009,

"STRAIGHT" Auditory morphing by Hideki Kawahara(Wakayama University/ATR) Interface designed by Takashi Yamaguchi




~ Cognitive MediaProcessing@2015
Spectrum reading

e \What are these?
® Hint : they are numbers.

. Time:  0.3248  Freq: 0.00 ¢ 03232 Freq: Q.00 Value:

2.19 BFEFENZRRZ a5 a

® This is the task that is done by a speech recognizer.



Cognitive Media Processing @ 2015

Title of each lecture i

!!!!!

e Theme-1

QSpeech communication technology - speech recognition -
® Speech communication technology - speech synthesis -

® Theme-3
* A new framework for “human-like” speech machines #1
* A new framework for “human-like” speech machines #2
* A new framework for “human-like” speech machines #3
* A new framework for “human-like” speech machines #4




Speech Communication Tech.
- Speech recognition -

Nobuaki Minematsu




Cognitive Media Processing @ 2015

Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From GMM-HMM to DNN-HMM

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models



Cognitive Media Processing @ 2015

Waveforms --> spectrums --> sequence of feature vectors
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Cognitive Media Processing @ 2015

Difficulty of ASR

¢ Task of Automatic Speech Recognition (ASR) oo I

® Automatic identification of what is said by any speaker
® Input: spectrum (feature vector) sequence
® Output: word sequence

® Acoustic difficulty of ASR —obfubiugl

® Alarge acoustic diversity of one and the same linguistic content, e.g. word

® Factors of the diversity: speaker identity, age, gender, speaking style, channel, line, etc.
® Not explicitly represented in the written form of language.

¢ Linguistic difficulty of ASR
* We’'re not speaking like the written form of language.

® How to characterize word sequences in naturally and spontaneously generated speech?
® How to treat ungrammatical utterances, word fragments, filled pauses, etc ?
* Machines do not understand the content of what is spoken.
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Cognitive Media Processing @ 2015

A well-known strategy for diversity

e Statistical framework of ASR
® Solution of argmax_{w} P(w|o)
® P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

® P(w]|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o --> w1, w2, w3, ...? o-->p1, p2, p3, ...7
e Data collection is very difficult to characterize or formulate P(w|o) directly.
* Use of the Bayesian rule

" p(wlo) = P:0) _ POlw)P@) __ Plolw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
® (specific) w --> 01, 02, 03, ...7? p-->o01,02, 03, ...7
e This data collection is possible enough by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)




Waveforms --> spectrums --> sequence of feature vectors

arg muzjxxP(wl, Wy weey WN |01y ey Opy vy OT ) =
arg max P(o1,...,0¢, ..., 07 |wy, wa, ..., wn ) P(wy, wa, ..., wN)

O : cepstrum vector



Cognitive Media Processing @ 2015

Cep. distortion and DTW

® Cepstrum vector = spectrum envelope

& WE(dB)

Ok 1k 2k 3k 4k
J& ¥ (He)

e 2 cepstrum vectors always satisfy the following equation.

® log|Sn|, log|Tn|: 2 spectrums
* log|S’'n|, log|T'n|: 2 spectrum envelopes that are characterized by M cepstrums.
® Euclid distance of cepstrums has a clear physical meaning.

D, — (log’S;L‘ — 1og\Sn|) - (log\Tél —10g\Tn!)

N—-1

M 2 1
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Cognitive Media Processing @ 2015

Cep. distortion and DTW

® Dynamic Time Warping
® Temporal alignment between two utterances of the same content

* Temporal alignment between two utterances of different contents
® Finding the best path that minimizes the accumulated distortion along that path.

min
p

1 I
- > d(fi, gp(i))]
1=1

* Local distortion: d(fi,g;)= Euclid distance of the corresponding two cepstrum vectors.
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~ Cognitive Media Processing@2015
Cep. distortion and DTW

¢ Total distortion accumulated up to point (i,j) = D(i,j)
® d(i,j) = local distortion (distance) between fi and g;.

- D(Zvj o 1) +d(7’7])

1
D(i,j) =min | D(i—1,j — 1)+ 2d(i, j) min [E Z d(i,p(i))] =T }] — D, J)
| D(i—1,j) +d(i, j)
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Cognitive Media Processing @ 2015

Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From GMM-HMM to DNN-HMM

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models



Cognitive Media Processing @ 2015

A well-known strategy for diversity

e Statistical framework of ASR
® Solution of argmax_{w} P(w|o)
® P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

® P(w]|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o --> w1, w2, w3, ...? o-->p1, p2, p3, ...7
e Data collection is very difficult to characterize or formulate P(w|o) directly.
* Use of the Bayesian rule

" p(wlo) = P:0) _ POlw)P@) __ Plolw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
® (specific) w --> 01, 02, 03, ...7? p-->o01,02, 03, ...7
e This data collection is possible enough by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)




Cognitive Media Processing @ 2015

Markov Process

Plenlzp_1,-+ 21) = Plan|e,_1)

e Signal at t = n depends only on the previous
signal (t=n-1).

o If signal att = n-1 is known, signals at t < n-1
have no effect on the next signal att = n.

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Hidden Markov Process

transition
—0

state
P(azn| 21,21 )=Pleal  Sn )
prevzlous Qbrserva:[ioh»s current state |

Observation sequence : z{,z9,---, zp, - -
(Hidden) state sequence : S¢,55,---, 5y, -

¢ Previous observations cannot determine the current state uniquely.
o Signals (features) are observed but states are hidden.

(©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

HMM as generative model

CLOSURE BURST RELEASE VOWE

Probabilistic generative model

State transition is modeled as transition probability.
Output features are modeled as output probability.

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Parameters of HMM

transition
'O—0
single Gaussian or

a mixture of Gaussians

e Transition prob. P(St+1|st — z) — {ah, agi, .- ajz-/.., as;}
e Output prob. : P(o|s; = i) = b;(0) = N (0; p;, T;)

Forward prob.

a;(t) = Plog, -, 01, 5(t) = jIM) = %%‘(f — L)a;;b; (o)
Backward prob.

/83( ) (Ot—Hv OT‘S(t) =J; N[) — Z%z (Ot—l—l)ﬁz(t"'_ 1)

(©1998, K.Takeda, N.Minematsu and T.Shimizu

state




Cognitive Media Processing @ 2015

Output probability of observation sequence (Trellis)

(a,b) = | (a,b) =
(0.7,0.3)  (0.6,0.4)

x0.7

d 0.7 | .o, 0.0

xo.6¢ ¢ x0.2
b x0.3 x0.4

0.126 04 0.112

X0.6 v v x0.2

b x0.3 x0.4
\ 4 0.023 0.029| .,

(©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Output probability of observation sequence (Viterbi)

x0.7

a’ 0.7 x0.4 0.0

x0.6 ¢ x0.2
b x0.3 x0.4

0.126 0.112

x0.6 x0.2

b x0.3 x0.4
 / 0.023 0.020] .

The maximum likelihood path is only adopted.

(©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Parameters of HMM

transition
'O—0
single Gaussian or

a mixture of Gaussians

e Transition prob. P(St+1|st — z) — {ah, agi, .- ajz-/.., as;}
e Output prob. : P(o|s; = i) = b;(0) = N (0; p;, T;)

Forward prob.

a;(t) = Plog, -, 01, 5(t) = jIM) = %%‘(f — L)a;;b; (o)
Backward prob.

/83( ) (Ot—Hv OT‘S(t) =J; N[) — Z%z (Ot—l—l)ﬁz(t"'_ 1)

(©1998, K.Takeda, N.Minematsu and T.Shimizu

state




Cognitive Media Processing @ 2015

Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.
e Forward prob.

a;(t) = P(o1, -+, 01, 5(t) = jIM) = %O‘i( 1)ajjbj(or)

e Backward prob.

8;(t) = P(og41, - opls(t) =5,M) = %ajibi(ot—i—l)ﬁi(t +1)
= a;(1)8(t) = P(0,s(t) = jIM)

a;(t)s;(t) _ a;(t)8;(t) = 1.(1)
pOlM)  an(T) /

— Represents how strongly ot is associated with state j.

%LJ() ot %O‘j(t)ﬁj(t)'ot )
B > L;(1) = 2o, (0)8:() P(O|M) > P(O|M)

—  P(s(t) =jl0,M) =

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Estimation of HMM parameters
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Cognitive Media Processing @ 2015
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Cognitive Media Processing @ 2015

Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.
e Forward prob.

a;(t) = P(o1, -+, 01, 5(t) = jIM) = %O‘i( 1)ajjbj(or)

e Backward prob.

8;(t) = P(og41, - opls(t) =5,M) = %ajibi(ot—i—l)ﬁi(t +1)
= a;(1)8(t) = P(0,s(t) = jIM)

a;(t)s;(t) _ a;(t)8;(t) = 1.(1)
pOlM)  an(T) /

— Represents how strongly ot is associated with state j.

%LJ() ot %O‘j(t)ﬁj(t)'ot )
B > L;(1) = 2o, (0)8:() P(O|M) > P(O|M)

—  P(s(t) =jl0,M) =

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Estimation of HMM parameters

P2 o ()P(1) o,

DCHOING
aj(t) s 2 40P, ()0~ W)o— W) Bi(t)
Forward prob. T Z o (t)f) (1) Backward prob.

O 00000 ’O*O*O*O*.*Q
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time

state
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(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Estimation of HMM parameters

o When the number of training data is 1,

) %Lj(f) 0 3 %Lj(f) (ot — 1) (o — 1)
u L — y N —

J %Lj(t) J %Lj(t)

t

o When the number of training data is R (>1),

1
. DI L) o] % pr |2 aj()85(0) - of
j = . — 1
;[gf:j(t)] > pr e ()85(0)
L ORCRDICETI
J r o
| L50)

#speakers = several thousands

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Recognition of isolated words

arg max P(W|0O) = arg max P(OW)P(W) = arg max P(O\W)
if prior probability of W is evenly distributed.

arg max P(O|M) = arg max {)Z( P(0, X|M)}

! (X=path)
arg mﬁxP(O\M) = arg mﬁx{m%XP(O,X\N[)}

a;(t) = %%‘(t —1)a;bi(or),  (an(T) =P(O|M))
l
$i(t) = mgx%'(t —1)a;jbi(op),  (on(T) = P(OIM))

(©)1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Recognition of isolated words

state

&
(4
(8
(2
(W

&

1 2 3 4 5 6

input frame

Search for the maximum likelihood path

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From HMM-GMM to HMM-DNN

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models



Cognitive Media Processing @ 2015

Phonemes
L

The minimum units of spoken language

~ short .
Vowels vowels a&,1, U, €, O

lon P T
V'O_W-e-s al., 1., ul, e., 00
Consonants plosives b, d, g, p, t, k
fﬁcéiivés S, Sha Z, ja f) h
affricates ch, ts
3r.,
#E: ky, py, -.

semi-vowels r, w, y

.nasals m, n, N

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Word lexicon (word dictionary)

Examples required for automated call centers

AN
ek
&
SA
T
=4
@D

suzuki
sato:
yoshida
saN

so.mau

e: gy o:
k a ch o:

no

BBEWLEY onegaishimasu

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Tree lexicon (compact representation of the words)

®
k ® i ®
k |

® @
d a

® @®

The following words gaito: (ﬁ%), sasaki (/E & 7}()’ sato: (/Eﬁ)
are stored as a tree. suzuki (%}*) , yoshi da (_5 )

©1998, K.Takeda, N.Minematsu and T.Shimizu




Cognitive Media Processing @ 2015

Tree-based lexicon using phoneme HMMs

i/ /t/ fo:/
b WGl
0,0, 0 a0..0:.0:.0:.0:.0,.0,.0,.0,.,0,.0,.0
‘f' /a/ /s/ /a/ /k/ i/
OrCnC b b G & &0
& $2.0:.0..0;.0; .0
/t/ lo:/
N8I N XX NI XA .
/v/ /z/ fu/ /k/ i/ ;
05,0 .0 .0, 0.0
/y/ /o/ /sh i/ /d/ /a/

Generation of state-based network containing
all the candidate words

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Coarticulation and context-dependent phone models

Acoustic features of a specific kind of phone
depends on its phonemic context.

a-k+i ag-k+e

model of /k/ = *-k+* = a-k+a a-k+u a-k+o -
monophone o-k+0 i-k+0
model of /k/
preceded by /a/and = a-k+i
succeeded by /i/ trihphone

A phoneme is defined by referring to the left
and the right context (phoneme)

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Clustering of phonemic contexts

Number of logically defined trihphones = N x N x N (N =~ 40)
Clustering of the contexts to reduce #triphones.

R T

------------------

P e KasNe
1y EH.a+NLS

--------------

b-a+p, d-a+t...

-

| Bt BBLS

b-a+s, d-a+i...

1

Context clustering is done based on phonetic
attributes of the left and the right phonemes.

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Unit of acoustic modeling

merit:  Within-word coarticulation effect is easy to model.

word demerit: For new words, actual utterances are needed.
model " #models will be easily increased.

use: Small vocabulary speech recognition systems

merit; Easy to add new words to the system.

phoneme demerit: Long coarticulation effect is ignored.
model " Every word has to be represented as phonemic string.

use: Large vocabulary speech recognition systems

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From GMM-HMM to DNN-HMM

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models



Cognitive Media Processing @ 2015

A well-known strategy for diversity

e Statistical framework of ASR
® Solution of argmax_{w} P(w|o)
® P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

® P(w]|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o --> w1, w2, w3, ...? o-->p1, p2, p3, ...7
e Data collection is very difficult to characterize or formulate P(w|o) directly.
* Use of the Bayesian rule

" p(wlo) = P:0) _ POlw)P@) __ Plolw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
® (specific) w --> 01, 02, 03, ...7? p-->o01,02, 03, ...7
e This data collection is possible enough by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)




Cognitive Media Processing @ 2015

Parameters of HMM

transition
'O—0
single Gaussian or

a mixture of Gaussians

e Transition prob. P(St+1|st — z) — {ah, agi, .- ajz-/.., as;}
e Output prob. : P(o|s; = i) = b;(0) = N (0; p;, T;)

Forward prob.

a;(t) = Plog, -, 01, 5(t) = jIM) = %%‘(f — L)a;;b; (o)
Backward prob.

/83( ) (Ot—Hv OT‘S(t) =J; N[) — Z%z (Ot—l—l)ﬁz(t"'_ 1)

(©1998, K.Takeda, N.Minematsu and T.Shimizu

state




GMM-HMM to DNN-HMM

NSNS AL /A//)

NEasl
RQY
P(o|s1) P(o|32) P(0|s3)DNN-GMM-HMM ‘/f";f:i‘ P(sq|0)
(52T L) K P(s2|o)
‘g»;;‘fg\g‘ P(83 O)
BEREE = O0O0C
GMM-HMM DNN-HMM (/\1/T1)wk)

¥ 2 GMM-HMM & DNN-HMM




~ Cognitive Media Processing @2015
DNN as phoneme posterior calculator

® cepstrum feature © — P(¢;|7)

* GMM-HMM is a model of P(Z|c;) | ’
P(c;|Z) has to be changed to P(Z|c;). | . . |

® The Bayesian rule, again.
P(c;|7)P(7)

Which is better, P(Z|c;) calculated by GMM-HMM or
P(Z|c;) calculated by DNN-HMM with the Bayesian rule?



GMM-HMM to DNN-HMM

NSNS AL /A//)

NEasl
RQY
P(o|s1) P(o|32) P(0|s3)DNN-GMM-HMM ‘/f";f:i‘ P(sq|0)
(52T L) K P(s2|o)
‘g»;;‘fg\g‘ P(83 O)
BEREE = O0O0C
GMM-HMM DNN-HMM (/\1/T1)wk)

¥ 2 GMM-HMM & DNN-HMM




~ Cognitive Media Processing@2015
Artificial Neural Network

* A model of a single neuron
® Linear transform + non-linear normalization

(u = z;wzxz + b)

0.5 iy —2l5 0 2

1 5 5
i ex_e_x
o x) T = 4 1/ N\ .

T41o7 o tanh(z) = ————
5 - 0 25 5

aY /['\ \ 1
=20 \ax /)| =1



Cognitive Media Processing @ 2015

Artificial Neural Network

¢ A model of a network of neurons
® Linear transform + non-linear normalization

y)\ yL
output vector
1 Yy’

gg% non-linear normalization

non-linear normalization

w' linear transform
input vector

XN B
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Artificial Neural Network

®* How to train the network so that it can classify the input vector.

® A classifier is trained so that it can output the posterior probability of P( c | x ).
® The dimension of the output vector = #classes

® Training data = pairs of data and class
¢ Output vector=(0,0,0, ...,,0,1,0,00)

®* How to train the classifier so that it can output a probability distribution.
® The final non-linear transform functions as normalizer for probability distribution

, (B(B(B output vector y'=f Wiyt + b)) = f (u)
y
softmax
uh = Whyl=1 4 pt
L
exp(u;)
non-linear normalization (Cjloy)
Zk exp(uﬁ)
1% W linear transform I —
y [ ] [ ] [ )
non-linear normalization

w' linear transform
input vector H—

s “+ 3 2 K 0 o2 3 & s
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GMM-HMM to DNN-HMM

F747Tz
HI\/IIVI HMM
GMM h M A £ - DNN
P(o|s1) P(o|s2) P(o|s3s)DNN-GMM-HMM =] P(s1]o)
CIEEN P=isy P(s2|o)
&7 P(s3|o)

EERH=E =

GMM-HMM DNN-HMM (/\ATJ1)wk)
* How to obtain the HMM state for each frame in the training data”
® DNN-HMM trains GMM-HMM internally at first.
® (Forced) alignment between GMM-HMM and training data is done.
® Then, the state for each frame is fixed and labeled.
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Why GMM-HMM < DNN-HMM?

o GMM = Generative model, DNN = Discriminative model

® Generative model has to characterize the probability distribution of manually-
crafted features such as cepstrum coefficients, given classes (=P(o|c))

e Discriminative model has to characterize the probability distribution of classes,
given acoustic observations (=P(c|0))

® o0 = linear transform + non-linear normalization = o'
e 0' = linear transform + non-linear normalization = 0"

e Multiple "feature" transformations are trained (designed) so that better features are
"automatically" created for classification.

ANTFZ X 2458 () - MFCC)
K D ARIR 7 i (B - LMFB)
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Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From GMM-HMM to DNN-HMM

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models
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A well-known strategy for diversity

e Statistical framework of ASR
® Solution of argmax_{w} P(w|o)
® P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

® P(w]|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o --> w1, w2, w3, ...? o-->p1, p2, p3, ...7
e Data collection is very difficult to characterize or formulate P(w|o) directly.
* Use of the Bayesian rule

" p(wlo) = P:0) _ POlw)P@) __ Plolw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
® (specific) w --> 01, 02, 03, ...7? p-->o01,02, 03, ...7
e This data collection is possible enough by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)
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Continuous speech (connect_ed_ WOrd) ‘re'cognition

Repétitive matching between an input utterance and word
sequences that are allowed in a specific language

» Constraints on words and their sequences (ordering)

+ Vocabulary: a set of candidate words |
x* Syntax: how words are arranged linearly.

+ Semantics: can be represented by word order??

. Exarhples of unaccepted sentences
cFL)IX /X UR YT 2 /% E D, (lexical error)
xFh/w X by o /id/HES /%, (syntax error)
« 1T/ ~ovx by Y= /% /MBS, (semantic error)

(©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Representation of syntax (grammar)

e BEEDEEEIABRBRVL ¥,
° ’é‘%@ﬂéﬁ% = A BREVL 35_;_0
 BEEDHARIABENVL ET,
| Rk
HEO _ SABELNLET
o Bk > O
specific specific'
expression 2o NI expression
variable

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Network grammar with a finite set of states

SA| BEWLET

START START END END

A sentence is accepted if it starts at one of the initial
states and ends at one of the final states.

(©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Speech recognition using a network grammar'

state state

) O O 0 {
OO Op O 40

p N

: ) 4 U 4 ( {BIRBIEE
D OrOrOr O] OeOrOr OO
) 0 0 U ) U Q4 L
Oe-OrOrOrC . OOrOr O

When a grammatical state has more than one preceding words,
the word of the maximum probability (or words with higher
probabilities) is adopted and it will be connected to the following
candidate words.

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Viterbi search algorithm
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©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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A well-known strategy for diversity

e Statistical framework of ASR
® Solution of argmax_{w} P(w|o)
® P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

® P(w]|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o --> w1, w2, w3, ...? o-->p1, p2, p3, ...7
e Data collection is very difficult to characterize or formulate P(w|o) directly.
* Use of the Bayesian rule

" p(wlo) = P:0) _ POlw)P@) __ Plolw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
® (specific) w --> 01, 02, 03, ...7? p-->o01,02, 03, ...7
e This data collection is possible enough by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)
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Probabilistic decision,

~ Observation: You pick a ball three times. The colors are® O @.
Probabilities of P@O @ | A) and P(@O@ | B)
3 7T 3 | T3 T
RA 761610 =0.063 %¥B 10X 1010 = (0.147
Decision: The bag used is more likely to be B.

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Statistical framework of speech recognition

P(A,W) _ P(AW)P(W)  P(AW)P(W)
P(A) P(A) > w P(AW)P(W)
A = Acoustic, W = Word

P(W|A) =

* P(bag|@ O @) > P(bag=A|@ O @) or P(bag=B|@ O ®)
« P(@O®@|bag=A) : prob. of bag A's generating @ 0 @.
e P(bag) > P(bag=A)LOI’ P(bag=B) Which bag is easier to be selected?

 If we have three bags of type-A and one bag of type-B, then

P($5A| @0® ) = 0.063 x 0.75 = 0.04725
P(¥B| @0®@ ) = 0.147 x 0.25 = 0.03675 ~

The bag used is likely to be A.

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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N-gram language model

The m'ost widely-used implementation of P(w)

Only the previous N-1 words are used to predict the following word.
(N-1)-order Markov process
n-1 words

P(.’L‘l, "t :fcn) - :P(.’Bnl-’ﬂl, v ) :mn—l)J P(wli "ot :?n—]_)
~P(2n|Tpn-N+1%n-1) N-1 words

~ P(wnlxn—N+1’“"xn—l)P(mlﬁ” ' :wn;l)
n , .
~ 1 P(ajlen_Ni1oi%i-1)

N-1 =1 --> bi-gram
N-1 =2 --> tri-gram

I'm giving a lecture on speech recognition technology to university students.

P(a | I'm, giving), P(lecture | giving, a), P(on | a, lecture),
P(speech | lecture, on), P(recognition | on, speech), ...

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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How to calculate N-gram prob.

¢ .... lecture on speech recognition ....
P( speech | lecture, on)
= C ( lecture, on, speech )/ C ( lecture, on)
P( recognition | on, speech )
= C ( on, speech, recognition ) / C ( on, speech )
P(w3|wl,w2)
=C(wl,w2,w3)/C(wl,w2)

e Typical problems of calculating N-gram prob
C(wl,w2,w3)=0 -->N-gram prob.=0 ?7?
C(wl,w2)=0 --> N-gram prob. = ?7??
axP(w3|w1l)orfxP(w3)are substituted as P ( w3 | w1, w2).
Context dependencies are ignored to some degree.
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2-gram as network grammar

e 2-gram as network grammar and as tree-based network grammar

(-e
Og0202020

(D-9-u

O O-N-®-
(Ot
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Development of a speech recognition system |

iInput speech =——p

results of
recognition

word matching

hypothesis
generation

e nn—

- R
probability
calculation
efficient —
pruning
decoder

acoustic

g g@ model

phoneme HMM

S = <AfH> <BhF]>
S=<A®>

grammar

AiEnaito
HEMBtakeda

lexicon

language
model

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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ASR under various conditions

B2 DR TICE T 5B HEERE

O 8% & i soana e (tiphone DEEELE)
SILQbe: kokudeoNobetonamukita:Nhe:einokokumiNnomewachimetakuSILSILQayag
adooojoowatsunerumadeiniwaSILSILtsukanarinosaigetsohichiootoshita

O &5 At (LaC + EEiEE DH#EA)
SILFWZ K THEABREBBZRANVDIKHADHDEDHILSILSIL>BPHREELL &
boh3FTVLIKLSLSLODBDLDETVWIFOEVEEB & LESL

O & AR mira R (Lic + BEEZDHFHEA, FRH=20K)

Istpass K| KAV NNFLHEEF %> EREB B Bil>o @, ? AV EE EX XM &HHS £T
BD BTV 2o HEBREEL

2ndpass KR RAVY NN FLAREFZ > EEEB A B> <. . AV EXKNFDHS ETE
DZEVWhEBEBREEL I
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ASR under various conditions

B2 DFGFTICH T 5 FRHEIERH

O 8% & i soana e (tiphone DEEELE)
SILQbe: kokudeoNobetonamukita:Nhe:einokokumiNnomewachimetakuSILSILQayag
adooojoowatsunerumadeiniwaSILSILtsukanarinosaigetsohichiootoshita

O &5 At (LaC + EEiEE DH#EA)
SILFWZ K THEABREBBZRANVDIKHADHDEDHILSILSIL>BPHREELL &
boh3FTVLIKLSLSLODBDLDETVWIFOEVEEB & LESL

O Ef A mmirare (LA + EFZ DB, FEH=20K)
Istpass K| KAV NNFLHEEF %> EREB B Bil>o @, ? AV EE EX XM &HHS £T
BD BREWZ-o HE AR EEL b
2ndpass KR RAVY NN FLAREFZ > EEEB A B> <. . AV EXKNFDHS ETE
DZEVWhEBEBREEL I

O XFEEE 5 = soaita A (L 5T + B EE R DEHAHEN)
Istpass KEDARMFLREEDERDEN S, BSRBRABEZEHDIXTICEK. HDEDDEBAZ
M\E %t L 7= o
2ndpass KEIODARMFLIREEDERDBIR G, BSHRABEZEHDIXTICIEK. DEDDEBZ
M\E &L o

O IEAEX
KEITEARNFLBEEANDERDBHIZ S, BSHREABZEZEDNDIETICIE DEDDODBRAZLELE
LT,
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Today’s menu

Fundamentals of statistical speech recognition
Acoustic models (HMM) for speech recognition
From word-based HMMs to phoneme-based HMMs
From GMM-HMM to DNN-HMM

Speech recognition using network grammars
Speech recognition using N-grams

Speech recognition using NN-based language models
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N-gram language model

The m'ost widely-used implementation of P(w)

Only the previous N-1 words are used to predict the following word.
(N-1)-order Markov process

P(zq,---,en) = Plenlzy,s2p1) Py, ,2p-1)
~P(Zn|Tn-Ny1yTn-1) |

~ P(wnlxn—N+1’“"xn—l)P(mlﬁ” ' :wn;l)
n , .
~ 1 P(ajlen_Ni1oi%i-1)

N-1 =1 --> bi-gram
N-1 =2 --> tri-gram

I'm giving a lecture on speech recognition technology to university students.

P(a | I'm, giving), P(lecture | giving, a), P(on | a, lecture),
P(speech | lecture, on), P(recognition | on, speech), ...

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Recurrent NN-based LM

output layer

® v(x) = word features of related to x
P(x) = probability of word x

h = hidden layer

P(wy), P(wz), ..., P(wy) at each time index

I

i

hidden layer Ch’

input layer

P(z,)

|

|

vz, )

time
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Next week

CMP is cancelled.
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Recommended books

LANGUAGE PROCESSING

A Gide o Theory, Algorithm, and System Development

foseword by Dr, Roj Reddy
amege Valkce Uimrty




