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Abstract
This paper describes a new and improved method for the frame-
work of structure to speech conversion we previously proposed.
Most of the speech synthesizers take a phoneme sequence as
input and generate speech by converting each of the phonemes
into its corresponding sound. In other words, they simulate a
human process of reading text out. However, infants usually
acquire speech communication ability without text or phoneme
sequences. Since their phonemic awareness is very immature,
they can hardly decompose an utterance into a sequence of
phones or phonemes. As developmental psychology claims, in-
fants acquire the holistic sound patterns of words from the utter-
ances of their parents, called word Gestalt, and they reproduce
them with their vocal tubes. This behavior is called vocal im-
itation. In our previous studies, the word Gestalt was defined
physically and a method of extracting it from a word utterance
was proposed. We already applied the word Gestalt to ASR,
CALL, and also speech generation, which we call structure to
speech conversion. Unlike reading machines, our framework
simulates infants’ vocal imitation. In this paper, a method for
improving our speech generation framework based on a struc-
tural cost function is proposed and evaluated.

Index Terms: speech synthesis, the structural representation,
vocal imitation, a structural cost function

1. Introduction
Most of the speech synthesizers are text-to-speech converters,
which take a phoneme sequence as input and generate a speech
stream corresponding to the sequence. To build a synthesizer,
symbol-to-sound mapping is learned from a speech corpus. If a
speech corpus of speaker A is used, the synthesizer learns A’s
voices and can read text out for him/her. A very good synthe-
sizer may be able to deceive speaker verification systems [1].

Developmental psychology tells that infants acquire spo-
ken language through imitating the utterances from their par-
ents, called vocal imitation. However, they never impersonate
their parents. It is impossible for infants to imitate their par-
ents’ voices due to a large difference in the shape and length of
their vocal tubes. To enable the vocal imitation in this situation,
some abstract representation of utterances should exist between
infants and their parents. One may claim that phonemic repre-
sentation underlies their speech communication but researchers
of infant study deny this claim. This is because infants’ phone-
mic awareness is very immature and it is difficult for them to
decompose an utterance into a sequence of phonemes [2, 3].
What makes the vocal imitation possible?

Researchers answer that infants extract the holistic sound
patterns from word utterances, called word Gestalt [2, 3] and

Figure 1: /aiueo/ utterances of a tall speaker and a short speaker.
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Figure 2: Speech sounds − vocal tube(size&length) = Gestalt.

they reproduce it with their short vocal tubes. Here, we can say
that the Gestalt has to be speaker-invariant because, whoever
speaks a specific word to infants using different voices, it seems
that infants always extract the same Gestalt.

What is the acoustic definition of the word Gestalt? Func-
tionally, it is a holistic and speaker-invariant pattern embed-
ded in an utterance. Recently, the third author showed a can-
didate answer mathematically and verified the validity of the
answer experimentally [4]. The proposed method of extracting
the Gestalt from an input utterance was used successfully for
ASR [5, 6] and CALL [7]. In addition, we applied the method
to speech generation, which modeled infants’ vocal imitation
well [8]. Our speech generation framework converts the Gestalt
back to speech sounds. We call it structure to speech (STS)
conversion. In the previous study, however, formulation and
implementation were insufficient for complete imitation of the
Gestalt. In this paper, so as to satisfy the structural constraints
better, a method for improving our speech generation frame-
work by using a structural cost function is proposed and evalu-
ated.

2. Acoustic definition of the Gestalt
2.1. Requirements of the Gestalt

What kind of acoustical conditions should be satisfied by the
word Gestalt? Figure 1 shows two examples of /aiueo/. One is
generated by a tall speaker and the other by a short one. If an
infant imitates these utterances, he/she will generate very sim-
ilar utterances because the same Gestalt is considered to exist
in both the utterances of Figure 1. Then, if we try to derive the
acoustic definition of the Gestalt, we have to find the speech
features commonly existing in both the utterances, i.e. speaker-
invariant speech features.

Why are the voices of a speaker different acoustically from
those of another? This is simply because the default shape (size,
length, etc) of the vocal tube is different among speakers. Since
speech sounds are always generated from a vocal tube, their
acoustic features are inevitably influenced by the default shape
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Figure 3: Invariant structuralization of an utterance.
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Figure 4: Structure extraction as HMM training of an utterance.

of the vocal tube, which is unique to the speaker. In this sense,
the Gestalt of an utterance is considered to be what remains after
subtracting features of the default shape of the vocal tube from
all the acoustic features of that utterance (See Figure 2).

One may claim that phonemic representation is a speaker-
invariant or vocal-tube-invariant representation of speech.
However, since infants’ phonemic awareness is very immature,
it is difficult for them to decompose an utterance into a phone-
mic sequence. From this point of view, the Gestalt of an ut-
terance should be extracted without phonemic decomposition.

2.2. Mathematical derivation of the Gestalt

In the above section, the requirements of Gestalt were consid-
ered. It should be a speaker-invariant and holistic feature. In
this section, it is defined mathematically. In speaker conversion
studies of speech synthesis, it is often assumed that speaker dif-
ferences are well modeled as space mapping. That is to say,
invariance with speaker difference means mapping invariance.
The distance measure of Equation 1, called f -divergence, satis-
fies this mathematical property. f -divergence is invariant with
any kind of invertible and differential mapping [9].

fdiv(pi, pj) =

I
pj(x)g

„
pi(x)

pj(x)

«
dx. (1)

Based on this invariant feature, we introduced a transform-
invariant representation of an utterance, shown in Figure 3. A
sequence of cepstrum vectors is converted into a sequence of
distributions through merging similar frames and estimating a
distribution for the merged frames. After that, every sound
contrast between any two distributions, even including tempo-
rally distant ones, is calculated as Bhattacharyya distance (BD),
which is a member of f -divergence family. An utterance is rep-
resented as a transform-invariant distance matrix, which can
uniquely characterize a geometrical structure, i.e. a holistic
pattern. We call this matrix-based representation as structural
representation and believe that the structure corresponds to the
Gestalt. In [5], this procedure was implemented as MAP-based
HMM training for an utterance, shown in Figure 4.

Figure 3 shows that the structural representation of an ut-
terance is obtained by extracting speech contrasts (dynamics)
only and discarding all the absolute and static features. Putting
it another way, only articulatory movements are focused on and
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Figure 5: Structure + vocal tube(size&length) = speech sounds
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Figure 6: Search for the next target under structural constraints
(a reverse process of structuralization of Figure 3).

the articulatory features corresponding to the static and default
shape of the vocal tube are ignored completely (See Figure 2).

The structure (the Gestalt) is so abstract a representation of
an utterance that, with the structure only, speech sounds cannot
be recovered or determined at all, shown in Figure 3. To de-
termine and locate the sounds of a given structure, what should
be additionally needed? Looking at Figure 2, we can say that
the static and default shape of the vocal tube is required for the
Gestalt to be realized acoustically. Figure 5 explains this pro-
cess conceptually and, in the following section, this process of
structure-to-speech conversion is implemented on computers.

3. Structure to speech conversion
3.1. Searching a cepstrum space for target speech events

Here, conversion from a given structure to a speech sound se-
quence is implemented as follows. Several events of a given
structure are fixed absolutely in advance. This step means that
the default shape of the vocal tube is determined. Then, us-
ing these points as initial conditions and the structure (distance
matrix) as constraint conditions, all the other events of the struc-
ture are searched for in a cepstrum space. Figure 6 shows how
to search for the next target using 3 already determined events
(colored ellipsoids) and structural constraints. In the case of in-
fants’ vocal imitation, the structural constraints are given from
their parents. About the initial conditions, infants may use
some speech sounds which they actually generated through vo-
cal communication or playing with their parents.

3.2. Geometrical solution of the problem

How do we solve this searching problem? In our previous work,
a geometrical approach was adopted [8]. This section describes
the previous method briefly. When the two distributions are
Gaussian, i.e. P1=N (μ1,Σ1) and P2=N (μ2,Σ2), BD is
formulated as follows,

BD(P1,P2) =
1

8
μt

12V
−1
12 μ12 +

1

2
ln

|V 12|
|Σ1| 12 |Σ2| 12

, (2)

where μ12=μ1−μ2, V 12=
Σ1+Σ2

2
. In this case, BD is in-

variant to any common linear transform. Now let us consider
a D-dimensional cepstrum space. Suppose that Σ1, Σ2 and
μ2 are already determined speech features and that we have
to locate μ1 in the cepstrum space using Equation 2 as struc-
tural constraint. In this case, the locus of μ1 is found to draw
a hyper-ellipsoid, ellipse in a D-dimensional space. Similarly,
constraint BD(P1,Pi) draws another hyper-ellipsoid for μ1.
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From this fact, the intersection of multiple ellipses gives us
the final solution for μ1. In other words, solving simultane-
ous equations with a D-dimensional unknown vector will find a
candidate for a target event. However, simultaneous equations
in the quadratic form (e.g. Equation 2) with D unknowns gen-
erally have multiple solutions. For solving this ambiguity, each
target was estimated by merging multiple candidates from sev-
eral sets of simultaneous equations derived from the structural
constraints and the initial conditions.

3.3. A structural cost function

In the previous section, we explained a primitive implementa-
tion of solving a search problem for STS. However, the above
formulation has two problems. The first problem lies in simul-
taneous equations. Let us assume that we have to estimate a tar-
get in a D-dimensional space using m initial conditions and the
structural constraints related to them. In this case, if D > m,
the resulting simultaneous equations are ill-formed. If D < m,
on the other hand, mCD sets of simultaneous equations are pos-
sible and it takes a long computation time to solve them, espe-
cially when D is high. In addition, merging (averaging) several
candidates does not guarantee an optimal solution.

The second problem is that each target was estimated inde-
pendently. That is to say, when we have multiple targets, the
searching in the previous section does not give us the targets
that can satisfy their structural constraints fully because struc-
tural constraints between the estimated targets were ignored.

To solve these two problems, in this paper, we propose a
searching method based on a structural cost function for the first
problem, and stepwise updating for the second problem. Now
we assume that all of covariance matrices are given, and that we
have to locate a mean vector μ of a target event from m initial
conditions. We introduce a cost function J(μ) as

J(μ) =
mX

i=1

(bd(μ, ci) − BDi)
2 , (3)

where BDi is a structural constraint between the already es-
timated event i and the target event, and bd(μ, ci) represents
BD between event i and μ, which is estimated so far. From
Equation 2, bd(μ, ci) becomes

bd(μ, ci) = (μ − ci)
tAi(μ − ci) + εi, (4)

where εi represents the second term and Ai represents 1
8
V −1

12

in Equation 2. To acquire the optimal μ, updating equations

„
∂2J

∂μ2

«
Δμ =

∂J

∂μ

˛̨˛̨
μn

(5)

μn+1 = μn − Δμ, (6)

are used until Δμ becomes sufficiently small.

For the second problem, stepwise updating is used. The
concept of this method is that estimated events are used as ini-
tial conditions for re-estimation. Let us assume the case of n
targets and m initial conditions. As Step 1, each target is esti-
mated independently. In Step 2, one event out of n estimated
events is selected and re-estimated using the other n−1 esti-
mated events as initial conditions. This step is repeated for each
of the other n−1 events. After that, all the n+m events are
dealt equally. The same re-estimation process in Step 2 was
repeated in 2 times.

4. Experiment

4.1. Experimental conditions

For evaluation of the proposed framework, experiments using
Japanese /aiueo/ utterances were carried out. We used speech
samples from 6 speakers (M1, M2 and M3 as male, and F1, F2
and F3 as female). The word Gestalt was extracted from ut-
terances of M1 and F1, and used as structural constraints when
searching for target events.

For converting a spectrum sequence to a cepstrum se-
quence, STRAIGHT analysis [10] was adopted and a sequence
of 40 dimensional vectors was obtained. For converting a cep-
strum sequence to a distribution sequence, MAP-based HMM
parameter estimation was adopted since all the distributions had
to be estimated from a single utterance. Then, an utterance was
converted into a sequence of 25 diagonal Gaussians. In addi-
tion, parameter division proposed in [5] was carried out. From a
single cepstrum stream, low dimensional sub-streams were ob-
tained. In this experiment, The number of dimensions for each
sub-stream was changed from 1 to 5. The searching problem
was solved in each sub-space.

Some portions of the other utterances from M2, M3, F2
and F3 (henceforth target speakers) were used as initial condi-
tions. After extracting prosodic features from these utterances
with STRAIGHT, the utterances were also converted into a se-
quence of 25 diagonal Gaussians. After that, 5 mean vectors
(3rd, 8th, 13rd, 18th, and 23rd ones in the 25 Gaussians) were
extracted and used as a part of initial conditions. In this exper-
iment, all the covariance matrices of target events were given
and also used as initial conditions. With these initial conditions
of the target speakers and the structural constraints from M1 and
F1, the remaining mean vectors were treated as targets and they
were searched for.

Finally using the prosodic features extracted above and a se-
quence of obtained distributions, utterances of the target speak-
ers were synthesized. When we compare this experiment with
infants’ vocal imitation, M1 and F1 is a father and a mother, and
target speakers are sons and daughters, who try to extract the
word Gestalt in their parents’ utterance and reproduce it acous-
tically using their vocal tubes.

4.2. Results

Figure 7 shows (a) the spectrogram of a resynthesized utterance
of M1, (b) that of a resynthesized utterance of M2, and (c) and
(d) are those of synthesized utterances with the M1’s structure
and the M2’s initial conditions (the M2’s imitation through the
M1’s Gestalt). (c) is the result from the previous method [8],
and (d) is the result from the proposed one. The number of sub-
streams is 40 (i.e. one-dimensional sub-streams) in (c), and 10
(i.e. four-dimensional sub-streams) in (d). In (c) and (d), the
spectrum slices in five square boxes were given as initial condi-
tions. Comparing (c) and (d) with (a) and (b) visually, we can
find that spectrograms of (c) and (d) are closer to that of (b). In
addition, the spectrogram of (c) includes some discontinuities,
but that of (d) does not. It implies that the speaker identity is
well realized in (c) and (d), and that moreover, searching based
on a structural cost function effectively improves the quality of
synthesized speech. We stored these four utterances in the con-
ference CD-ROM; (a) a.wav, (b) b.wav, (c) c.wav and (d) d.wav.
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(a): resynthesized speech of M1 (father).
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(b): resynthesized speech of M2 (boy).
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(c): Output speech synthesized with M1’s structure and
M2’s initial conditions by using the method in [8].
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(d): Output speech synthesized with M1’s structure and
M2’s initial conditions by using the proposed method.

Figure 7: Spectrograms of resynthesized speech (a and b) and synthesized speech (c and d); (a) M1 (father), (b) M2 (boy), (c) M1’s
structure + M2’s initial conditions (geometrical solution) and (d) M1’s structure + M2’s initial conditions (cost function based).
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Figure 8: Results of subjective evaluation.

5. Subjective evaluation
5.1. Conditions

A listening test was carried out to evaluate naturalness of the
speech samples generated by the proposed method. The test
was conducted with 11 subjects to compare the utterances syn-
thesized by the proposed method and those by our previous one
[8]. All the samples for evaluation were /aiueo/ utterances. The
conditions are in terms of (1) combination of 2 parents × 4 chil-
dren and (2) the number of dimensions for sub-streams. In addi-
tion, for the term of (2), the samples generated by our previous
method in one- and two-dimensional sub-streams were also as-
sessed. This listening test was a paired comparison. Each sub-
ject listened to a pair of stimuli on different conditions where
only the term of (2) is different between the two. After that,
each subject judged which sample was more natural.

5.2. Results

Figure 8 shows preference scores of the subjective test. In
Figure 8, block size (BS) means the number of dimensions for
each sub-stream. From Figure 8, in the previous method [8],
the higher number of dimensions degrades the quality of syn-
thesized speech. However, in the proposed one, the quality im-
proves when the number of dimensions is higher. Especially in
the cases of BS=4 and BS=5, the preference scores of our
new methods exceed those of the method [8]. In addition, com-
putational cost of our new method is lower than that of the previ-
ous one even in the case of higher block size. This result means
that it is much easier in a high dimensional space than a low

dimensional space to find the optimal speech event if we derive
a proper constraint, i.e. a structural cost function. On the other
hand, in the previous method, degradation of the quality in the
case of BS=2 is caused by the difficulty of accurate solution of
simultaneous equations in a high dimensional space.

6. Conclusions
We have proposed a new method for the framework of struc-
ture to speech conversion. In the framework of structure to
speech conversion, the word Gestalt is extracted from an input
utterance and reproduced acoustically with some initial condi-
tions given. This framework can simulate infants’ vocal im-
itation and learning. Our proposed method in this paper has
improved the sound quality of synthesized speech. One of rea-
sons of these improvements is that a structural cost function en-
ables us to find the optimal speech event in the high dimensional
space. For more improvements of our framework, we’re plan-
ning to synthesize words including consonants and to integrate
the prosodic aspect into the framework.
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