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Abstract
This paper introduces speaker adaptive training techniques to
tensor-based arbitrary speaker conversion. In voice conversion
studies, realization of conversion from/to an arbitrary speaker’s
voice is one of the important objectives. For this purpose, eigen-
voice conversion (EVC), which is based on an eigenvoice Gaus-
sian mixture model (EV-GMM), was proposed. Although the
EVC can effectively construct the conversion model for arbi-
trary target speakers using only a few utterances, increase of
the utterances used to construct the conversion model does not
always improve the conversion performance. This is because
the EV-GMM method has an inherent problem in representation
of GMM supervectors. We previously proposed tensor-based
speaker space as a solution for this problem, and realized more
flexible control of speaker characteristics. In this paper, to aim
larger improvement of the performance of VC, speaker adaptive
training and tensor-based speaker representation are integrated.
The proposed method can construct the flexible and precise con-
version model, and experimental results of one-to-many voice
conversion demonstrate the effectiveness of the proposed ap-
proach.
Index Terms: voice conversion, Gaussian mixture model,
eigenvoice, Tucker decomposition, speaker adaptive training

1. Introduction
Voice conversion (VC), or speaker conversion is a technique to
transform an input utterance of a speaker to another utterance
that sounds like another speaker with its linguistic content pre-
served [1]. VC techniques can apply to various applications
besides speech synthesis [2, 3]. Among several statistical ap-
proaches to construct the conversion model, GMM-based ap-
proaches are widely used because of their flexibility [2, 4].

When constructing the conversion model, however, a par-
allel training corpus, which are a set of utterance pairs of the
same sentences spoken by a source and a target speakers, are
required. This requirement limits the applicability of the con-
version model to the specific speaker pair. Hence, flexible con-
trol of speaker characteristics with little need of a parallel cor-
pus is an important objective of VC. For this purpose, several
adaptation techniques using voices of other speakers have been
proposed [5, 6]. These approaches are inspired by speaker adap-
tation techniques in speech recognition studies. Among these,
eigenvoice conversion (EVC) [6], which uses the eigenvoice
technique proposed in speech recognition [7], is implemented
by constructing a speaker space. Based on training with multi-
ple pre-stored parallel data sets, a speaker space is constructed
utilizing GMM supervector, in a similar manner to speaker
recognition studies [8]. Then, adaptation to an arbitrary speaker

becomes the problem to locate that speaker in the constructed
speaker space. Hence, precise construction of the speaker space
is important for improvement of the performance of voice con-
version. However, the representation of GMM supervector has
an inherent problem that multiple factors of acoustic variations
are included in the same space. Hence, scalability of adaptation
performance of EVC is limited caused by the problem.

We have recently proposed a new representation of speaker
space based on tensor analysis for arbitrary speaker conversion
[9]. In our approach, an arbitrary speaker is not represented as a
supervector, but as a matrix whose row and column respectively
correspond to the component of GMM and the dimension of the
mean vector. Using this representation, we can express the data
set of the pre-stored speakers as a third-order tensor, and intro-
duce the tensor analysis to obtain the speaker space. Based on
this speaker space, Tensor-based Arbitrary Speaker Conversion
(TASC) has been realized and the effectiveness of TASC, com-
pared with EVC, was shown by the one-to-many VC task [9].

Because our approach is a new method of representing a
speaker space, it can be flexibly integrated with other effec-
tive techniques which are independent of speaker space. In
this paper, we introduce speaker adaptive training for TASC.
Speaker adaptive training was introduced for training a canoni-
cal speaker-independent model [10], and its effectiveness in ar-
bitrary speaker conversion was shown in [11]. This paper inves-
tigates the effects of speaker adaptive training when it is applied
to tensor-based flexible speaker representation.

2. Eigenvoice conversion (EVC)
2.1. Eigenvoice GMM (EV-GMM)

In this section, one-to-many EVC [6] is briefly described. Let
X t = [x!
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t ]! be 2D-
dimensional vectors of the source speaker and the s-th target
speaker, respectively. They consist of D-dimensional static and
dynamic features. The notation (·)! denotes transposition of a
vector. The joint probability density of the source and the target
vectors is modeled by an EV-GMM as follows:
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where N (x; µ,Σ) denotes the normal distribution with a mean
vector µ and a covariance matrix Σ. The weight of the m-
th component is denoted as αm, and the number of mixture



components is M . In EV-GMM, when we use the S pre-
stored speakers, the target mean vector µ(Y )

m is represented
as a linear combination of the bias vector b(0)
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representative vectors Bm =
h
b(1)

m , b(2)
m , . . . , b(J)

m

i
, where

J < S. In EV-GMM, the speaker individuality of the target
is controlled with the J-dimensional vector w(s). Namely, a
speaker space is constructed by J bases of supervectors B =
[B!
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of the speaker space is realized by principal component analy-
sis (PCA). First, a target independent joint density GMM (TI-
GMM) is trained using all of the multiple parallel data sets si-
multaneously. Next, each target dependent GMM is trained by
updating only the target mean vectors of TI-GMM using each
of the corresponding parallel data set. As a feature vector of the
speaker space, a supervector for each pre-stored target speaker
is constructed by concatenating the mean vectors of the target
dependent GMM. The bias vector b and representative vectors
B are determined with PCA for all the supervectors of the target
speakers.

2.2. Adaptation of EV-GMM

The EV-GMM is adapted for arbitrary speakers by estimating
the weight vector w for given their speech samples based on
maximum likelihood criterion [6]. Let Y (tar) be a sequence of
the target features. w is estimated as follows:

ŵ = argmax
w

Z
P (X , Y (tar)|λ(EV ), w)dX . (3)

3. Tensor-based speaker space
In this section, construction of the speaker space based on the
tensor analysis is described [9]. In the EVC approach, GMM
supervector is a representation of speaker. However, the rep-
resentation of GMM supervector has an inherent problem that
multiple factors of acoustic variations are embedded in the same
space. Namely, Gaussian component of GMM and the dimen-
sion of the mean vector are treated interdependently, and the
speaker space becomes a high-dimensional vector space. To
solve this problem, each speaker is represented as a matrix of
which the row and the column respectively correspond to the
Gaussian component and the dimension of the mean vector, and
the speaker space is derived by Tucker decompostion of the set
of the matrices, instead of PCA of the set of the supervectors.
Tucker decompostion can be viewed as expansion of SVD [12],
and treat multiple factors of variations properly.

To construct the speaker space based on Tucker decomposi-
tion, each speaker in the pre-stored data sets is expressed as an
M × D′ matrix [13], where M is the number of mixtures, and

D′ = 2D. First, the bias matrix b′ =
h
b(0)
1 , b(0)

2 , . . . , b(0)
m
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is

subtracted from each speaker matrix in advance. When we have
the S pre-stored speakers, the training data sets are represented
as the tensor M ∈ RM×D′×S . By Tucker decompostion of
M, U (M) ∈ RM×M , U (D′) ∈ RD′×D′

, and U (S) ∈ RS×S

are extracted as bases matrices. Focusing on relation of mixture
components, we adopt U (M) for the bases, as similar to [13].
Finally, using the truncated bases, consequently, we obtain the
matrix for a new speaker as

µ(new) =U (M)W !
(new) + b′, (4)

where U (M)∈RM×K(K ≤ M) and W (new)∈RD′×K are a
representative matrix and a weight one, respectively. Hence, in
our proposed method, the parameters to be estimated become a
D′ × K matrix, while they become a J-dimensional vector in
the conventional EVC.

For adaptation data Y (tar), we derive the following updat-
ing equations based on maximum likelihood criterion [9]:
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where vec() is the vec-operator that stacks the columns of a
matrix into a vector.

4. Speaker adaptive training for TASC
This section describes speaker adaptive training (SAT) for
tensor-based arbitrary speaker conversion. Applying SAT to
tensor-based speaker representation is expected to construct a
canonical model and to realize more flexible and precise voice
conversion.

Similarly to SAT for EVC [11], shared parameters in the
canonical model for TASC are estimated by maximizing likeli-
hood of all the models for individual pre-stored speakers:
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model to the s-th pre-stored speaker with the weight matrix
W s. WS

1 denotes a tensor representing a set of the weight ma-
trices of S pre-stored speakers (W 1, W 2, . . . , WS ). In SAT,
the shared parameters of the canonical model and WS

1 are esti-
mated in a maximum likelihood manner. To realize it, the fol-
lowing auxiliary function is derived:
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As mentioned in [11], simultaneous update for all parameters
based on Equation 11 is difficult because of their interdepen-
dency on each other. Hence, the following update scheme is
adopted. (1) Using the current shared parameters and Equation
11, γ(s)

m,ts
and γ(s)

m are calculated. (2) Using γ(s)
m,ts

and γ(s)
m

and the current shared parameters, each weight matrix Ŵ s of
the pre-stored speakers is updated. (3) Using the results of the
previous steps, the shared weight parameters α̂m for GMM and
the bases matrices Û

(M)
are updated. (4) The covariance ma-

trices Σ̂
(ZZ)
m are updated using the updated parameters in the

previous steps. (5) Step 1 to 4 are repeated until the number of
repetition equals to the preset value. Note that each step in the
update scheme can monotonically increase the likelihood of the
adapted models for individual pre-stored speakers.



In Step 2, the updated weight matrix Ŵ s for the s-th pre-
stored speaker is written as
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Compared with Equations 5 and 6, Equations 12 and 13 have
similar forms, but they include the effects of the vectors of the
reference speaker X . In Steps 3 and 4, the shared parameters
are updated as follows:
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"
µ̂(X)

m
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Ês =

»
I O O
O I Ŵ s
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and I denotes an identity matrix whose size is D′. Compared
with the update equations in [11], Equations 16 to 19 have the
same forms. That is to say, updating the shared parameters is
carried out in the same manner as [11]. In Equations 18 and
19, the shared covariance matrix is calculated as the mean of
the covariance matrices, each of which corresponds to covari-
ances of a pair of speakers. Hence, it is expected that SAT for
TASC also affects for compacting variations as well as SAT
for EVC. On the other hand, construction of the mean vec-
tors by the bases and the weight parameters (Equations 20 to
22) is different from that in [11]. In the proposed method, we
need to calculate (2D′ + K) × (2D′ + K)-sized inverse ma-
trix for updating ûm. In [11], the update of v̂m that corre-
sponds to Equation 17 in the proposed method requires calcu-
lating {D′ · (J +2)}×{D′ · (J +2)}-sized inverse matrix. Al-
though the assumption that covariance matrices Σ(XX)

m , Σ(XY )
m

and Σ(Y Y )
m are diagonal reduces computational cost to D′ times

calculation of (J + 2) × (J + 2)-sized inverse matrices, it is
more computationally expensive than the proposed method.

5. Experimental evaluation
5.1. Experimental conditions

To evaluate the performance of our proposed method and the
effects of SAT on both EVC and TASC, one-to-many voice
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Figure 1: Mean of variances for target features; TI-GMM,
EVC-SAT and TASC-SAT.

conversion experiments were carried out. We used one male
speaker as the reference speaker from ATR Japanese speech
database B-set [14], and 273 pre-stored speakers including 137
male and 136 female speakers1. 50 sentences were uttered by
each speaker. In the evaluation, we selected new 6 speakers of
3 male and 3 female speakers. We used 1 to 16 utterances for
adaptation, and other 21 utterances for evaluation.

We used 24-dimensional mel-cepstrum vectors for spec-
trum representation (D=24, D′=48). These were derived by
STRAIGHT analysis [15]. The number of mixture components
(M ) was fixed to 128.

In SAT for EVC, the number of representative vectors was
fixed to 272 (J). In SAT for TASC, the size of representative
matrices was fixed to 80 (K). Both values were determined
from the results of adaptation using models without SAT. The
number of iterations for SAT was fixed to 7.

We evaluated four methods for arbitrary speaker conver-
sion; the tensor-based one-to-many VC with and without SAT
(TASC w/ SAT and TASC w/o SAT), the one-to-many EVC
with and without SAT (EVC w/ SAT and EVC w/o SAT). In
addition, traditional VC with the parallel training (Traditional)
was also compared with them [16]. Note that traditional VC re-
quires th parallel data for the target speakers. In both EVC and
TASC, the number of representative vectors (J ′ ≤ J) and the
size of representative matrix (K′ ≤ K) were varied.

5.2. Effects of SAT on compacting variance

We compared diagonal components of the target covariance ma-
trices Σ(Y Y )

m of TI-GMM, EVC-based model after SAT, and
tensor-based model after SAT. Figure 1 shows the mean of vari-
ances for target features in individual Gaussian components
of these models. Values of diagonal components of TI-GMM
are relatively larger than those of EVC-based model after SAT
and tensor-based model after SAT. This result shows the effects
of SAT that they compact variations of the models trained by
many speakers. Compared tensor-based model with EVC-based
model, there is no significant difference between values of di-
agonal components of them.

5.3. Objective evaluations

We evaluated the conversion performance using mel-cepstral
distortion between the converted vectors and the vectors of the
targets. Figure 2 shows the result of average mel-cepstral for the
test data as a function of the number of adaptation, or training
sentences. In “Traditional,” for each case, the optimal number

1http://www.milab.is.tsukuba.ac.jp/jnas/instruct.html
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Table 1: The optimal numbers of the representative parameters
for each method.

# of sentences 1 2 4 8 16
EVC w/o SAT (J) 272
EVC w/ SAT (J ′) 272
TASC w/o SAT (K) 20 20 40 80 80
TASC w/ SAT (K′) 10 20 30 40 40

of mixture components is selected. Compared with the con-
version methods without SAT, the performance of the methods
using SAT is better in both of EVC and TASC. This means that
SAT works effectively to compact variances, and that conver-
sion performances were improved by constructing the canon-
ical model which works as a speaker-dependent models more
likely. Compared with EVC, the performance of TASC is bet-
ter both with and without SAT. This means that our proposed
representation of the speaker space works well rather than su-
pervector representation of the speaker space. TASC with SAT
outperformed “Traditional” even when the number of training
or adaptation utterances is 16. This means that combination of
tensor-based representation and SAT can effectively capture the
information in the adaptation data.

Table 1 shows the optimal numbers of the representative
parameters in each method. In the cases of EVC, J = 272 and
J ′ = 272 are optimal even the number of sentences is varied.
This means the flexibility of EVC is limited because of the high-
dimensional (D′M ) representative vectors. On the other hand,
in the cases of TASC, the optimal numbers of the representative
parameters are varied depending on the number of adaptation
utterances. Since the number of mixtures is 128, the size of the
representative matrix was effectively reduced. Interestingly, af-
ter SAT, the optimal size of the representative matrix is slightly
reduced. It might be caused by the effects of SAT on compact-
ing variations.

6. Conclusions
We have proposed speaker adaptive training (SAT) for the
tensor-based speaker space, to improve the performance of
speaker conversion for arbitrary target speakers. In the tensor-
based speaker representation that we have previously proposed,
SAT works effectively to construct a canonical and precise
model for voice conversion as well as in the case of EVC. For

further works, the effectiveness of SAT on tensor-based arbi-
trary speaker conversion should be investigated in large-scale
subjective evaluations. In addition, the optimization of the rep-
resentative parameters in the proposed framework also should
be investigated. Baysian treatment of arbitrary speaker con-
version including representation of speaker space, the structure
optimization, and adaptation based on tensor representation is
another further direction.
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